Analysis of bacterial diversity and genetic evolution of Lacticaseibacillus paracasei isolates in fermentation pit mud

Aims Since little is known about the genetic diversity of lactic acid bacteria (LAB) isolates from the fermentation pit mud (FPM), we sought to evaluate the bacterial structure, identify the LAB isolates and investigate the genotype and genetic diversity of the LAB isolates. Methods and Results Usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2022-09, Vol.133 (3), p.1821-1831
Hauptverfasser: Zhang, Zhendong, Dong, Yun, Xiang, Fanshu, Wang, Yurong, Hou, Qiangchuan, Ni, Hui, Cai, Wenchao, Liu, Wenhui, Yang, Shaoyong, Guo, Zhuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aims Since little is known about the genetic diversity of lactic acid bacteria (LAB) isolates from the fermentation pit mud (FPM), we sought to evaluate the bacterial structure, identify the LAB isolates and investigate the genotype and genetic diversity of the LAB isolates. Methods and Results Using high‐throughput MiSeq sequencing, we identified seven dominant bacterial genera in FPM. Lactobacillus had the highest abundance. We isolated 55 LAB strains. These isolates were all identified as Lacticaseibacillus paracasei. Using an extant multilocus sequence typing (MLST) scheme, isolates were assigned to 18 sequence types (STs) and three clonal complexes. ST1, the largest group, mainly comprised FPM isolates. Niche‐specific ST2 to ST18 only contained FPM isolates. Isolates could be divided into four lineages, with most assigned to Lineage 1. Only one FPM isolate was classified as L. paracasei subsp. paracasei. Other isolates could not be classified at the subspecies level using the seven MLST loci. Conclusions Lactobacilli account for a high proportion of bacteria in pit mud. Based on the traditional culture method, L. paracasei was the dominant species, and these isolates exhibit a high ethanol tolerance, high intraspecific diversity and specific genetic profiles. Significance and Impact of the Study The study described the characterization of FPM bacterial diversity, giving an insight into the genetic diversity of L. paracasei strains present in FPM.
ISSN:1364-5072
1365-2672
DOI:10.1111/jam.15672