Discriminating Between Benign and Malignant Solid Ovarian Tumors Based on Clinical and Radiomic Features of MRI

To develop and validate a combined model integrating clinical and radiomic features to non-invasive discriminate between the benign and malignant solid ovarian tumors. A total of 148 patients with 156 solid ovarian tumors (86 benign and 70 malignant tumors) were included in this study. The dataset w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academic radiology 2023-05, Vol.30 (5), p.814-822
Hauptverfasser: Zheng, Yuemei, Wang, Hong, Li, Qiong, Sun, Haoran, Guo, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To develop and validate a combined model integrating clinical and radiomic features to non-invasive discriminate between the benign and malignant solid ovarian tumors. A total of 148 patients with 156 solid ovarian tumors (86 benign and 70 malignant tumors) were included in this study. The dataset was split into the training and the test set with a ratio of 8:2 using stratified random sampling. 12 clinical features and 1612 radiomic features were extracted from each tumor. These features were selected by least absolute shrinkage and selection operator (Lasso). Three classification models were built using extreme gradient boosting (XGB) algorithm: clinical model, radiomic model, combined model. The area under the receiver operating characteristic curve (AUC), accuracy, precision and sensitivity were analyzed to evaluate the performance of these models. All of the three models obtained good performances in differentiating benign with malignant solid ovarian tumors in both training and test sets. The AUC, accuracy, precision, sensitivity of clinical model and radiomic model in test set were 0.847 (95% confidence interval (CI), 0.707-0.986, p
ISSN:1076-6332
1878-4046
DOI:10.1016/j.acra.2022.06.007