Marinoquinolones and Marinobactoic Acid: Antimicrobial and Cytotoxic ortho-Dialkylbenzene-Class Metabolites Produced by a Marine Obligate Gammaproteobacterium of the Genus Marinobacterium
Chemical investigation of the culture extract of a marine obligate proteobacterium, Marinobacterium sp. C17-8, isolated from scleractinian coral Euphyllia sp., led to the discovery of three new o-dialkylbenzene-class metabolites, designated marinoquinolones A (1) and B (2) and marinobactoic acid (3)...
Gespeichert in:
Veröffentlicht in: | Journal of natural products (Washington, D.C.) D.C.), 2022-07, Vol.85 (7), p.1763-1770 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical investigation of the culture extract of a marine obligate proteobacterium, Marinobacterium sp. C17-8, isolated from scleractinian coral Euphyllia sp., led to the discovery of three new o-dialkylbenzene-class metabolites, designated marinoquinolones A (1) and B (2) and marinobactoic acid (3). Spectroscopic analysis using MS and NMR revealed the structures of 1 and 2 to be 4-quinolones with an o-dialkylbenzene-containing side chain at C3 and 3 to be a fatty acid bearing an o-dialkylbenzene substructure. The 4-quinolone form of 1 and 2 was unequivocally determined by comparison of the 1H, 13C, and 15N chemical shifts of 1 with those predicted for 2-methyl-4-quinolone A and its tautomer 2-methyl-4-quinolinol B by quantum chemical calculation. Compound 1 was proven to be racemic by X-ray crystallographic analysis and chiral-phase HPLC analysis of its chemical degradation product. Compounds 1–3 exhibited antimicrobial activity against bacteria and filamentous fungi at MIC of 6.3–50 μg/mL. In addition, all compounds showed cytotoxicity against P388 murine leukemia cells at micromolar ranges. |
---|---|
ISSN: | 0163-3864 1520-6025 |
DOI: | 10.1021/acs.jnatprod.2c00281 |