A novel method for the prediction of functional biological activity of polyethylene wear debris

Abstract The comparative performance of artificial hip joints has been extensively investigated in vitro through measurements of wear volumes. in vivo a major cause of long-term failure is wear-debris-induced osteolysis. These adverse biological reactions are not simply dependent on wear volume, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2001-01, Vol.215 (2), p.127-132
Hauptverfasser: Fisher, J, Bell, J, Barbour, P S M, Tipper, J L, Mattews, J B, Besong, A A, Stone, M H, Ingham, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The comparative performance of artificial hip joints has been extensively investigated in vitro through measurements of wear volumes. in vivo a major cause of long-term failure is wear-debris-induced osteolysis. These adverse biological reactions are not simply dependent on wear volume, but are also controlled by the size and volumetric concentration of the debris. A novel model is presented which predicts functional biological activity; this is determined by integrating the product of the biological activity function and the volumetric concentration function with the wear volume over the whole particle size range. This model combines conventional wear volume measurements with particle analysis and the output from in vitro cell culture studies to provide a new indicator of osteolytic potential. The application of the model is demonstrated through comparison of the functional biological activity of wear debris from polyethylene acetabular cups articulating under three different conditions in a hip joint simulator.
ISSN:0954-4119
2041-3033
DOI:10.1243/0954411011533599