An overview of the VASIMR engine - High power space propulsion with RF plasma generation and heating
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of exhaust modulation at constant power. While the plasma is produced by a helicon discharge, the bulk of the energy is added in a separate downstream stage by ion cyclot...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of exhaust modulation at constant power. While the plasma is produced by a helicon discharge, the bulk of the energy is added in a separate downstream stage by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by the adiabatic expansion of the plasma in a magnetic nozzle. Exhaust variation in the VASIMR is primarily achieved by the selective partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. However, other complementary techniques are also being studied. Operational and performance considerations favor the light gases. A NASA-led, research effort, involving several teams in the U.S., explores the scientific and technological foundations of this concept. The research involves theory, experiment, engineering design, mission analysis, and technology development. Experimentally, high density, stable plasma discharges have been generated in helium, hydrogen and deuterium, as well as mixtures of these gases. Key issues involve the optimization of the helicon discharge for high-density operation and the efficient coupling of ICRH to the plasma, prior to acceleration by the magnetic nozzle. Plasma acceleration by the magnetic nozzle and subsequent detachment has been demonstrated in numerical simulations. These results are presently undergoing experimental verification. A brisk technology development effort for space-qualified, compact, solid-state RF equipment, and high temperature superconducting magnets is under way in support of this project. A Conceptual point design for an early space demonstrator on the International Space Station has been defined. Also, a parametric study of a fast (115 day,) VASIMR-driven human Mars mission has been completed. This paper reviews the progress obtained in all these areas and outlines plans and strategies for continued research. (Author) |
---|---|
ISSN: | 0094-243X |