Radix Astragali residue-derived porous amino-laced double-network hydrogel for efficient Pb(II) removal: Performance and modeling

Valorizing solid waste for heavy metal adsorption is highly desirable to avoid global natural resources depletion. In this study, we developed a new protocol to valorize Radix Astragali residue (one of the Chinese medicine residues) into a low-cost, chemically robust, and highly permeable (ca. 90%)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2022-09, Vol.438, p.129418-129418, Article 129418
Hauptverfasser: Qiu, Zhiyuan, Fu, Kaixing, Yu, Deyou, Luo, Jinming, Shang, Jingge, Luo, Shenglian, Crittenden, John C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Valorizing solid waste for heavy metal adsorption is highly desirable to avoid global natural resources depletion. In this study, we developed a new protocol to valorize Radix Astragali residue (one of the Chinese medicine residues) into a low-cost, chemically robust, and highly permeable (ca. 90%) amino-laced porous double-network hydrogel (NH2-CNFs/PAA) for efficient Pb(II) adsorption. The NH2-CNFs/PAA showed (i) excellent Pb(II) adsorption capacity (i.e., 994.5 mg g−1, ~4.8 mmol g−1), (ii) fast adsorption kinetics (kf = 2.01 ×10−5 m s−1), (iii) broad working pH range (2.0–6.0), and (iv) excellent regeneration capability (~15 cycles). (v) excellent performance in various real water matrices on Pb(II) removal. Moreover, its high selectivity (distribution coefficient Kd ~2.4 ×106 mL g−1) toward Pb(II) was owing to the present of abundant amino groups (-NH2). Furthermore, the fix-bed column test indicated the NH2-CNFs/PAA can effectively remove 114.6 bed volumes (influent concentration ~5000 μg L−1) with an enrichment factor 10.9. The full-scale system modeling (i.e., pore surface diffusion model (PSDM)) has been applied to predict the NH2-CNFs/PAA performance on Pb(II) removal. Overall, we have provided an alternative “win-win” scenario that can resolve the Chinese medicine residues disposal issue by valorizing it into high performance gel-based adsorbents for efficient heavy metal removal. [Display omitted] •Chinese medicine residue was effectively valorized to produce hydrogel adsorbent.•Amino-laced porous hydrogel (NH2-CNFs/PAA) was robust, highly permeable, and low-cost.•NH2-CNFs/PAA has shown excellent Pb(II) removal capability under various water conditions.•Adsorption mechanism was experimentally unrevealed using various characterizations.•Full-scale performance of NH2-CNFs/PAA was predicted using pore surface diffusion model.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2022.129418