Plant–frugivore networks are robust to species loss even in highly built-up urban ecosystems

Animal seed dispersal processes are an important aspect of ecosystem services, as they shape the survival of seed dispersers and the balanced distribution of propagules for many plant communities. Several studies within tropical wild ecosystems have generally shown that seed dispersal processes are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oecologia 2022-07, Vol.199 (3), p.637-648
Hauptverfasser: Mubamba, Saidy, Nduna, Norman, Siachoono, Stanford, Chibesa, Moses, Phiri, Darius, Chama, Lackson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Animal seed dispersal processes are an important aspect of ecosystem services, as they shape the survival of seed dispersers and the balanced distribution of propagules for many plant communities. Several studies within tropical wild ecosystems have generally shown that seed dispersal processes are highly generalised and robust to extinction. Studies examining seed dispersal networks in highly built-up urban ecosystems and their robustness to species loss or extinction are rare. We examined avian seed dispersal networks across an urban ecosystem characterised by a high human settlement and infrastructure of the built environment in Zambia to determine their network specialisation, interaction evenness and interaction diversity, as these three parameters are critical in driving the resilience of these mutualisms’ interactions against extinction. A total of 405 individuals representing 11 species of birds were observed and recorded feeding on a total of 11 focal fleshy-fruiting plant species. Network specialisation was generally low and remained similar across study areas. Interaction evenness and interaction diversity were not only high but also remained similar across study areas. Low specialisation and high interaction evenness and diversity show that mutualistic interactions in these networks are equally highly generalised, suggesting a stable and robust coexistence of species in plant–frugivore communities within urban ecosystems. Generally, our results seem to broadly suggest that opportunities for conservation still exist in these ecosystems provided urbanisation is accompanied by promoting either the management of remnant fruiting plants or the cultivation of new ones to support the avian communities existing in these areas.
ISSN:0029-8549
1432-1939
DOI:10.1007/s00442-022-05213-9