Comparison of immunohistochemistry and RT-qPCR for assessing ER, PR, HER2, and Ki67 and evaluating subtypes in patients with breast cancer

Purpose Currently, the most commonly applied method for the determination of breast cancer subtypes is to test estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki67 by immunohistochemistry (IHC). However, the IHC method has substantial intraobs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Breast cancer research and treatment 2022-08, Vol.194 (3), p.517-529
Hauptverfasser: Chen, Lili, Chen, Yanyang, Xie, Zhongpeng, Luo, Jiao, Wang, Yuefeng, Zhou, Jianwen, Huang, Leilei, Li, Hongxia, Wang, Linhai, Liu, Pei, Shu, Man, Zhang, Wenhui, Ke, Zunfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Currently, the most commonly applied method for the determination of breast cancer subtypes is to test estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki67 by immunohistochemistry (IHC). However, the IHC method has substantial intraobserver and interobserver variability. ESR1, PGR, ERBB2, and MKi67 mRNA tests by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay may improve the diagnostic objectivity and efficiency. Here, we compared the concordance between RT-qPCR and IHC for assessment of the same biomarkers and evaluated the subtypes. Methods A total of 265 eligible cases were divided into a training cohort and a validation cohort, and the expressions of ER/ESR1, PR/PGR, HER2/ERBB2, and Ki67/MKI67 were tested by IHC and RT-qPCR. Then, the appropriate cutoff of RT-qPCR was calculated in the training cohort. The concordance between RT-qPCR and IHC was calculated for individual marker. In addition, we investigated the subtypes based on the RT-qPCR results. Results The Spearman correlation coefficients between ER/ESR1, PR/PGR, HER2/ERBB2, and Ki67/MKI67 by IHC and RT-qPCR were 0.768, 0.699, 0.762, and 0.387, respectively. The cutoff values for the RT-qPCR assay of ESR1 (1%), PGR (1%), ERBB2, and MKi67 (14%) were 35.539, 32.139, 36.398, and 29.176, respectively. The overall percent agreement (OPA) between ER/ESR1, PR/PGR, HER2/ERBB2, and Ki67/MKI67 by IHC and RT-qPCR was 92.48%, 73.68%, 92.80%, and 74.44%, respectively. A total of 224 (84.53%) specimens were concordant for the breast cancer subtypes (IHC-based type) by RT-qPCR. Conclusion Evaluation of breast cancer biomarker status by RT-qPCR was highly concordant with IHC. RT-qPCR can be used as a supplementary method to detect molecular markers of breast cancer.
ISSN:0167-6806
1573-7217
DOI:10.1007/s10549-022-06649-6