Au-Ni-Sn intermetallic phase relationships in eutectic Pb-Sn solder formed on Ni/Au metallization

Recent work has shown that a Au-Ni-Sn ternary compound with a nominal composition of Au sub(0.5)Ni sub(0.5)Sn sub(4) redeposits and grows at the interface between eutectic Pb-Sn solder and Ni/Au metallization during aging at 150 degree C. The present work verifies the existence of the Au sub(0.5)Ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2001-04, Vol.30 (4), p.409-414
Hauptverfasser: SONG, H. G, AHN, J. P, MINOR, A. M, MORRIS, J. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent work has shown that a Au-Ni-Sn ternary compound with a nominal composition of Au sub(0.5)Ni sub(0.5)Sn sub(4) redeposits and grows at the interface between eutectic Pb-Sn solder and Ni/Au metallization during aging at 150 degree C. The present work verifies the existence of the Au sub(0.5)Ni sub(0.5 )Sn sub(4) phase by examining the Sn-rich corner of the Au-Ni-Sn ternary phase diagram. The reconfiguration mechanism of the AuSn sub(4) from the bulk solder is also discussed, with detailed observations of the Au sub(0.5)Ni sub(0.5)Sn sub(4 ) microstructure. The results show that the Ni solubility limit in the AuSn sub(4) phase is approximately 12 at.% at 150 degree C and thus, the Au sub(0.5)Ni sub(0.5)Sn sub(4) phase is a ternary AuSn sub(4)-based compound with high Ni solubility. Due to the slight solubility and the fast diffusion of Au in the eutectic Pb-Sn at 150 degree C, the AuSn sub(4) intermetallics in the bulk solder can reconfigure to form a Au sub(x)Ni sub(1-x)Sn sub(4) compound at the interface where Ni is available. The Au sub(x)Ni sub(1-x)Sn sub(4) compound layer consists of nanocrystals arranged in a larger grain-like morphology. It appears that the inherent lattice strain of the Au sub(x)Ni sub(1-x)Sn sub(4) compound and the volume change due to its formation results in a nanocrystalline microstructure.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-001-0052-9