On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels

The mechanical stability of dispersed retained austenite, i.e., the resistance of this austenite to mechanically induced martensitic transformation, was characterized at room temperature on two steels which differed by their silicon content. The steels had been heat treated in such a way that each s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2001-11, Vol.32 (11), p.2759-2768
Hauptverfasser: JACQUES, P. J, LADRIERE, J, DELANNAY, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanical stability of dispersed retained austenite, i.e., the resistance of this austenite to mechanically induced martensitic transformation, was characterized at room temperature on two steels which differed by their silicon content. The steels had been heat treated in such a way that each specimen presented the same initial volume fraction of austenite and the same austenite grain size. Nevertheless, depending on the specimen, the retained austenite contained different amounts of carbon and was surrounded by different phases. Measurements of the variation of the volume fraction of untransformed austenite as a function of uniaxial plastic strain revealed that, besides the carbon content of retained austenite, the strength of the other phases surrounding austenite grains also influences the austenite resistance to martensitic transformation. The presence of thermal martensite together with the silicon solid-solution strengthening of the intercritical ferrite matrix can 'shield' austenite from the externally applied load. As a consequence, the increase of the mechanical stability of retained austenite is not solely related to the decrease of the M sub s temperature induced by carbon enrichment.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-001-1027-4