Blending Electrostatic Spinning Fabrication of Superhydrophilic/Underwater Superoleophobic Polysulfonamide/Polyvinylpyrrolidone Nanofibrous Membranes for Efficient Oil–Water Emulsion Separation
The scarcity of water resources has led to widespread interest in the treatment of oily wastewater. This study prepared a novel superhydrophilic/underwater superoleophobic polysulfonamide (PSA)/polyvinylpyrrolidone (PVP) nanofibrous membrane through electrostatic spinning for efficient oil–water emu...
Gespeichert in:
Veröffentlicht in: | Langmuir 2022-07, Vol.38 (27), p.8241-8251 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The scarcity of water resources has led to widespread interest in the treatment of oily wastewater. This study prepared a novel superhydrophilic/underwater superoleophobic polysulfonamide (PSA)/polyvinylpyrrolidone (PVP) nanofibrous membrane through electrostatic spinning for efficient oil–water emulsion separation. The surface morphology, fiber diameter distribution, wettability properties, and oil–water emulsion separation performance of the membranes were investigated. Results showed that the addition of PVP increases the diameter of the fibers, which led to a loose, large, porous structure and improved the permeability of the membranes. A high pure-water flux of 2057 L·m–2·h–1 was obtained for membranes with PVP addition of 3 wt%, providing an 835% increase in pure-water flux compared with a pure PSA nanofibrous membrane (220 L·m–2·h–1). For n-hexane-in-water emulsions, the optimum membrane obtained a high separation efficiency of 99.7%, in which flux was 1.5 times greater than that of the pure PSA nanofibrous membrane. Moreover, the optimum membrane exhibited good recycling stability and solvent resistance. The as-prepared PSA/PVP nanofibrous membrane displayed high permeability, an outstanding rejection rate, resistance to organic solvents, and reusability for oil–water separation, providing great potential in practical membrane separation applications. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c00640 |