Study on the active components and mechanism of Suanzaoren decoction in improving cognitive impairment caused by sleep deprivation
ETHNOPHARMACOLOGICAL RELEVANCESuanzaoren Decoction (SZRD) is a traditional and classic prescription for the treatment of insomnia, with a history of more than 1,000 years. It replenishes blood components, calms the nerves, reduces fever and irritability. It is commonly used in the clinical treatment...
Gespeichert in:
Veröffentlicht in: | Journal of ethnopharmacology 2022-10, Vol.296, p.115502-115502, Article 115502 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ETHNOPHARMACOLOGICAL RELEVANCESuanzaoren Decoction (SZRD) is a traditional and classic prescription for the treatment of insomnia, with a history of more than 1,000 years. It replenishes blood components, calms the nerves, reduces fever and irritability. It is commonly used in the clinical treatment of chronic fatigue syndrome, cardiac neurosis, and menopausal syndromes. Modern pharmacological studies have shown that it improves cognitive impairment; however, its mechanism of action remains unclear. AIM OF THE STUDYThis study preliminarily investigated the potential bioactive components and mechanism of SZRD in improving cognitive impairment by exploring network pharmacology, molecular docking, and conducting in vivo experiments. MATERIALS AND METHODSThe components of various Chinese herbs in SZRD and their disease-related targets were identified through network pharmacology and literature. Gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of intersection targets were performed using the relevant database. Next, the "Components-Targets-Pathways" (C-T-P) and "Protein-Protein interaction" networks were constructed using the enrichment analysis results to further identify potential pathways, bioactive components, and hub genes. At the same time, molecular docking was used to further distinguish the key bioactive components and genes of SZRD responsible for improving cognitive impairment. Finally, the potential mechanism of action was further analysed and verified using in vivo experiments. RESULTSA total of 117 potential active components and 138 intersection targets were identified by network pharmacology screening. The key bioactive components, including calycosin, 5-Prenylbutein, licochalcone G, glypallichalcone, and ZINC189892, were identified by analysing the networks and molecular docking results. Hub genes included ACHE, CYP19A1, EGFR, ESR1, and ESR2. The oestrogen signalling pathway was the most important in the enrichment analysis. In vivo experiments further proved that SZRD could improve cognitive impairment by affecting the oestrogen signalling pathway and the expression of ACHE and CYP19A1. CONCLUSIONSNetwork pharmacology and in vivo experiments demonstrate that SZRD improves cognitive impairment caused by sleep disturbance through estrogen receptor pathway, which provides a basis for its clinical application. |
---|---|
ISSN: | 0378-8741 1872-7573 |
DOI: | 10.1016/j.jep.2022.115502 |