On the VC Dimension of Bounded Margin Classifiers
In this paper we prove a result that is fundamental to the generalization properties of Vapnik's support vector machines and other large margin classifiers. In particular, we prove that the minimum margin over all dichotomies of k ≤ n + 1 points inside a unit ball in R^sup n^ is maximized when...
Gespeichert in:
Veröffentlicht in: | Machine learning 2001-10, Vol.45 (1), p.33-44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove a result that is fundamental to the generalization properties of Vapnik's support vector machines and other large margin classifiers. In particular, we prove that the minimum margin over all dichotomies of k ≤ n + 1 points inside a unit ball in R^sup n^ is maximized when the points form a regular simplex on the unit sphere. We also provide an alternative proof directly in the framework of level fat shattering.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0885-6125 1573-0565 |
DOI: | 10.1023/A:1010971905232 |