Integrating scheduling and physical design into a coherent compilation cycle for reconfigurable computing architectures

Advances in the FPGA technology, both in terms of device capacity and architecture, have resulted in introduction of reconfigurable computing machines, where the hardware adapts itself to the running application to gain speedup. To keep up with the ever-growing performance expectations of such syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bazargan, Kia, Ogrenci, Seda, Sarrafzadeh, Majid
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in the FPGA technology, both in terms of device capacity and architecture, have resulted in introduction of reconfigurable computing machines, where the hardware adapts itself to the running application to gain speedup. To keep up with the ever-growing performance expectations of such systems, designers need new methodologies and tools for developing reconfigurable computing systems (RCS). This paper addresses the need for fast compilation and physical design phase to be used in application development / debugging / testing cycle for RCS. We present a high-level synthesis approach that is integrated with placement, making the compilation cycle much faster. On the average, our tool generates the VHDL code (and the corresponding placement information) from the data flow graph of a program in less than a minute. By compromising 30% in the clock frequency of the circuit, we can achieve about 10 times speedup in the Xilinx placement phase, and 2.5 times overall speedup in the Xilinx place-and-route phase, a reasonable trade-off when developing RCS applications.
ISSN:0738-100X
DOI:10.1145/378239.379038