How does mitochondrial function relate to thermogenic capacity and basal metabolic rate in small birds?
We investigated the role of mitochondrial function in the avian thermoregulatory response to a cold environment. Using black-capped chickadees (Poecile atricapillus) acclimated to cold (−10°C) and thermoneutral (27°C) temperatures, we expected to observe an upregulation of pectoralis muscle and live...
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 2022-06, Vol.225 (12) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated the role of mitochondrial function in the avian thermoregulatory response to a cold environment. Using black-capped chickadees (Poecile atricapillus) acclimated to cold (−10°C) and thermoneutral (27°C) temperatures, we expected to observe an upregulation of pectoralis muscle and liver respiratory capacity that would be visible in mitochondrial adjustments in cold-acclimated birds. We also predicted that these adjustments would correlate with thermogenic capacity (Msum) and basal metabolic rate (BMR). Using tissue high-resolution respirometry, mitochondrial performance was measured as respiration rate triggered by proton leak and the activity of complex I (OXPHOSCI) and complex I+II (OXPHOSCI+CII) in the liver and pectoralis muscle. The activity of citrate synthase (CS) and cytochrome c oxidase (CCO) was also used as a marker of mitochondrial density. We found 20% higher total CS activity in the whole pectoralis muscle and 39% higher total CCO activity in the whole liver of cold-acclimated chickadees relative to that of birds kept at thermoneutrality. This indicates that cold acclimation increased overall aerobic capacity of these tissues. Msum correlated positively with mitochondrial proton leak in the muscle of cold-acclimated birds while BMR correlated with OXPHOSCI in the liver with a pattern that differed between treatments. Consequently, this study revealed a divergence in mitochondrial metabolism between thermal acclimation states in birds. Some functions of the mitochondria covary with thermogenic capacity and basal maintenance costs in patterns that are dependent on temperature and body mass. |
---|---|
ISSN: | 0022-0949 1477-9145 |
DOI: | 10.1242/jeb.242612 |