Excitation-Wavelength-Dependent Organic Long-Persistent Luminescence Originating from Excited-State Long-Range Proton Transfer
Stimuli-responsive functional luminescent materials with tunable color and long-persistent emission have emerged as a powerful tool in information encryption, anticounterfeiting, and bioelectronics. Herein, we prove a novel strategy for manipulating the proton transfer pathways in the salicylaldehyd...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2022-07, Vol.144 (28), p.12652-12660 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stimuli-responsive functional luminescent materials with tunable color and long-persistent emission have emerged as a powerful tool in information encryption, anticounterfeiting, and bioelectronics. Herein, we prove a novel strategy for manipulating the proton transfer pathways in the salicylaldehyde derivative EQCN solutions/powder to produce excitation wavelength-dependent (Ex-De) performances with switchable emissions (blue-sky, green, and orange). The experiments and theoretical results demonstrated that the different luminous colors are originated from enol (E) form (blue-sky), Keto-1 (K1) form (orange) through the excited-state intramolecular proton transfer (ESIPT) process, and Keto-2 (K2) form (green) through the excited-state long-range proton transfer (ESLRPT) process. We leverage synergistic effects between the dopant and matrix (dimethyl terephthalate, DTT) to manipulate the excited-state proton transfer pathway in EQCN@DTT mixture powders to generate Ex-De long-persistent luminescence (Ex-De-LPL), which can be well applied in multilevel information encryption. This strategy not only paves an intriguing way for the construction and preparation of pure organic Ex-De materials but also offers a guideline for developing LPL materials based on ESLRPT processes. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.2c01248 |