Rationally Designed Molecules Synergistically Modulate Multifaceted Aβ Toxicity, Microglial Activation, and Neuroinflammation
Synergistic modulation of multifaceted toxicity is the key to tackle multifactorial Alzheimer’s disease (AD). The etiology of AD includes amyloid β (Aβ) amyloidosis, metal ion dyshomeostasis, reactive oxygen species (ROS), oxidative stress, mitochondrial damage, and neuroinflammation. We rationally...
Gespeichert in:
Veröffentlicht in: | ACS chemical neuroscience 2022-07, Vol.13 (14), p.2209-2221 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synergistic modulation of multifaceted toxicity is the key to tackle multifactorial Alzheimer’s disease (AD). The etiology of AD includes amyloid β (Aβ) amyloidosis, metal ion dyshomeostasis, reactive oxygen species (ROS), oxidative stress, mitochondrial damage, and neuroinflammation. We rationally designed multifunctional modulators by integrating pharmacophores for metal chelation, antioxidant and anti-inflammatory properties, and modulation of Aβ42 aggregation on the naphthalene monoimide (NMI) scaffold. The in vitro and cellular studies of NMIs revealed that M3 synergistically modulates metal-independent and -dependent amyloid toxicity, scavenges ROS, alleviates oxidative stress, and emulates Nrf2-mediated stress response in neuronal cells. M3 effectively reduced structural and functional damage of mitochondria, reduced Cyt c levels, and rescued cells from apoptosis. The biological atomic force microscopy and Western blot analysis revealed the ability of M3 to suppress microglial activation and neuroinflammation through inhibition of the NF-κβ pathway. The synergistic action of M3 is in agreement with our design strategy to develop a multifunctional therapeutic candidate by integrating multiple pharmacophores with distinct structural and functional elements to ameliorate the multifaceted toxicity of AD. |
---|---|
ISSN: | 1948-7193 1948-7193 |
DOI: | 10.1021/acschemneuro.2c00276 |