Light–Matter Interactions in Hybrid Material Metasurfaces
This Review focuses on the integration of plasmonic and dielectric metasurfaces with emissive or stimuli-responsive materials for manipulating light–matter interactions at the nanoscale. Metasurfaces, engineered planar structures with rationally designed building blocks, can change the local phase a...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2022-10, Vol.122 (19), p.15177-15203 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This Review focuses on the integration of plasmonic and dielectric metasurfaces with emissive or stimuli-responsive materials for manipulating light–matter interactions at the nanoscale. Metasurfaces, engineered planar structures with rationally designed building blocks, can change the local phase and intensity of electromagnetic waves at the subwavelength unit level and offers more degrees of freedom to control the flow of light. A combination of metasurfaces and nanoscale emitters facilitates access to weak and strong coupling regimes for enhanced photoluminescence, nanoscale lasing, controlled quantum emission, and formation of exciton–polaritons. In addition to emissive materials, functional materials that respond to external stimuli can be combined with metasurfaces to engineer tunable nanophotonic devices. Emerging metasurface designs including surface-functionalized, chemically tunable, and multilayer hybrid metasurfaces open prospects for diverse applications, including photocatalysis, sensing, displays, and quantum information. |
---|---|
ISSN: | 0009-2665 1520-6890 |
DOI: | 10.1021/acs.chemrev.2c00011 |