Time-Frequency Analysis for Transfer Function Estimation and Application to Flutter Clearance

A transfer function estimation procedure that relies on the time-frequency analysis of input and output signals is described. This method was developed in an attempt to better identify the aeroelastic behavior of NASA Dryden's F-18 systems research aircraft and to predict its flutter boundaries...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 1998-05, Vol.21 (3), p.375-382
Hauptverfasser: Feron, E, Brenner, M, Paduano, J, Turevskiy, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A transfer function estimation procedure that relies on the time-frequency analysis of input and output signals is described. This method was developed in an attempt to better identify the aeroelastic behavior of NASA Dryden's F-18 systems research aircraft and to predict its flutter boundaries using in-flight experimental data. Numerical experiments on field data show that exploiting the time-frequency characteristics of the excitation inputs can bring enhanced accuracy and confidence when identifying multi-input/multi-output transfer functions. In particular, the proposed approach complements many well-established black-box identification procedures by providing an independent way to obtain transfer function estimates. A computational tool implementing this approach is now being evaluated for practical use at NASA Dryden Flight Research Center. (Author)
ISSN:0731-5090
1533-3884
DOI:10.2514/2.4269