Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies

Abstract Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2022-07, Vol.23 (4)
Hauptverfasser: Peng, Lihong, Wang, Feixiang, Wang, Zhao, Tan, Jingwei, Huang, Li, Tian, Xiongfei, Liu, Guangyi, Zhou, Liqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Briefings in bioinformatics
container_volume 23
creator Peng, Lihong
Wang, Feixiang
Wang, Zhao
Tan, Jingwei
Huang, Li
Tian, Xiongfei
Liu, Guangyi
Zhou, Liqian
description Abstract Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between and within various cell types in a tumour microenvironment. Focusing on the coordinated expression patterns of ligands and cognate receptors, cell–cell communication can be inferred through ligand–receptor interactions (LRIs). In this manuscript, we carry out the following work: (i) introduce pipeline for ligand–receptor-mediated intercellular communication estimation from single-cell transcriptomics and list a few available LRI-related databases and visualization tools; (ii) demonstrate seven classical intercellular communication scoring strategies, highlight four types of representative intercellular communication inference methods, including network-based approaches, machine learning-based approaches, spatial information-based approaches and other approaches; (iii) summarize the evaluation and validation avenues for intercellular communication inference and analyze the advantages and limitations for the above four types of cell–cell communication methods; (iv) comment several major challenges while provide further research directions for intercellular communication analysis in the tumour microenvironments. We anticipate that this work helps to better understand intercellular crosstalk and to further develop powerful cell–cell communication estimation tools for tumor-targeted therapy.
doi_str_mv 10.1093/bib/bbac234
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681443287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbac234</oup_id><sourcerecordid>2699593078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ef2c2fee43b6ad970248e3a9a2089ce1660b50e49986587c99edb14dbd35d5023</originalsourceid><addsrcrecordid>eNp9kc1KxDAQx4so-HnyBQKCCFJNk_Qj3mTxCwQvei5pOl2ztEnNpMLefAfvPpxPYnbXkwcPwwzhN_-ZzD9JjjN6kVHJLxvTXDaN0oyLrWQvE2WZCpqL7VVdlGkuCr6b7CMuKGW0rLK95GsGff_98aljItoNw2SNVsE4S4ztwIPVQJRtY6h-iQbjMwmvQMI0uMmTwWjvwL4b7-wANiDpvBsIGjvvIV2rBq8sam_G4CKNV6RVQREPGPs14Fo9Th6nsJ6reoKxJcDcAB4mO53qEY5-80HycnvzPLtPH5_uHmbXj6nmLA8pdEyzDkDwplCtLCkTFXAlFaOV1JAVBW1yCkLKqsirUksJbZOJtml53uaU8YPkbKM7evc2AYZ6MLjaXllwE9asqDIhOKvKiJ78QRfxI3HtFSVlLnm8bKTON1Q8D6KHrh69GZRf1hmtV17V0av616tIn25oN43_gj96uprD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699593078</pqid></control><display><type>article</type><title>Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies</title><source>Oxford Journals Open Access Collection</source><creator>Peng, Lihong ; Wang, Feixiang ; Wang, Zhao ; Tan, Jingwei ; Huang, Li ; Tian, Xiongfei ; Liu, Guangyi ; Zhou, Liqian</creator><creatorcontrib>Peng, Lihong ; Wang, Feixiang ; Wang, Zhao ; Tan, Jingwei ; Huang, Li ; Tian, Xiongfei ; Liu, Guangyi ; Zhou, Liqian</creatorcontrib><description>Abstract Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between and within various cell types in a tumour microenvironment. Focusing on the coordinated expression patterns of ligands and cognate receptors, cell–cell communication can be inferred through ligand–receptor interactions (LRIs). In this manuscript, we carry out the following work: (i) introduce pipeline for ligand–receptor-mediated intercellular communication estimation from single-cell transcriptomics and list a few available LRI-related databases and visualization tools; (ii) demonstrate seven classical intercellular communication scoring strategies, highlight four types of representative intercellular communication inference methods, including network-based approaches, machine learning-based approaches, spatial information-based approaches and other approaches; (iii) summarize the evaluation and validation avenues for intercellular communication inference and analyze the advantages and limitations for the above four types of cell–cell communication methods; (iv) comment several major challenges while provide further research directions for intercellular communication analysis in the tumour microenvironments. We anticipate that this work helps to better understand intercellular crosstalk and to further develop powerful cell–cell communication estimation tools for tumor-targeted therapy.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbac234</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Cancer ; Carcinoma ; Cell interactions ; Communication ; Computer applications ; Crosstalk ; Immune system ; Inference ; Ligands ; Machine learning ; Microenvironments ; Receptors ; Spatial data ; Transcriptomics ; Tumor microenvironment ; Tumors</subject><ispartof>Briefings in bioinformatics, 2022-07, Vol.23 (4)</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-ef2c2fee43b6ad970248e3a9a2089ce1660b50e49986587c99edb14dbd35d5023</citedby><cites>FETCH-LOGICAL-c325t-ef2c2fee43b6ad970248e3a9a2089ce1660b50e49986587c99edb14dbd35d5023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbac234$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Peng, Lihong</creatorcontrib><creatorcontrib>Wang, Feixiang</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Tan, Jingwei</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Tian, Xiongfei</creatorcontrib><creatorcontrib>Liu, Guangyi</creatorcontrib><creatorcontrib>Zhou, Liqian</creatorcontrib><title>Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies</title><title>Briefings in bioinformatics</title><description>Abstract Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between and within various cell types in a tumour microenvironment. Focusing on the coordinated expression patterns of ligands and cognate receptors, cell–cell communication can be inferred through ligand–receptor interactions (LRIs). In this manuscript, we carry out the following work: (i) introduce pipeline for ligand–receptor-mediated intercellular communication estimation from single-cell transcriptomics and list a few available LRI-related databases and visualization tools; (ii) demonstrate seven classical intercellular communication scoring strategies, highlight four types of representative intercellular communication inference methods, including network-based approaches, machine learning-based approaches, spatial information-based approaches and other approaches; (iii) summarize the evaluation and validation avenues for intercellular communication inference and analyze the advantages and limitations for the above four types of cell–cell communication methods; (iv) comment several major challenges while provide further research directions for intercellular communication analysis in the tumour microenvironments. We anticipate that this work helps to better understand intercellular crosstalk and to further develop powerful cell–cell communication estimation tools for tumor-targeted therapy.</description><subject>Cancer</subject><subject>Carcinoma</subject><subject>Cell interactions</subject><subject>Communication</subject><subject>Computer applications</subject><subject>Crosstalk</subject><subject>Immune system</subject><subject>Inference</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Microenvironments</subject><subject>Receptors</subject><subject>Spatial data</subject><subject>Transcriptomics</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAQx4so-HnyBQKCCFJNk_Qj3mTxCwQvei5pOl2ztEnNpMLefAfvPpxPYnbXkwcPwwzhN_-ZzD9JjjN6kVHJLxvTXDaN0oyLrWQvE2WZCpqL7VVdlGkuCr6b7CMuKGW0rLK95GsGff_98aljItoNw2SNVsE4S4ztwIPVQJRtY6h-iQbjMwmvQMI0uMmTwWjvwL4b7-wANiDpvBsIGjvvIV2rBq8sam_G4CKNV6RVQREPGPs14Fo9Th6nsJ6reoKxJcDcAB4mO53qEY5-80HycnvzPLtPH5_uHmbXj6nmLA8pdEyzDkDwplCtLCkTFXAlFaOV1JAVBW1yCkLKqsirUksJbZOJtml53uaU8YPkbKM7evc2AYZ6MLjaXllwE9asqDIhOKvKiJ78QRfxI3HtFSVlLnm8bKTON1Q8D6KHrh69GZRf1hmtV17V0av616tIn25oN43_gj96uprD</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Peng, Lihong</creator><creator>Wang, Feixiang</creator><creator>Wang, Zhao</creator><creator>Tan, Jingwei</creator><creator>Huang, Li</creator><creator>Tian, Xiongfei</creator><creator>Liu, Guangyi</creator><creator>Zhou, Liqian</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20220718</creationdate><title>Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies</title><author>Peng, Lihong ; Wang, Feixiang ; Wang, Zhao ; Tan, Jingwei ; Huang, Li ; Tian, Xiongfei ; Liu, Guangyi ; Zhou, Liqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ef2c2fee43b6ad970248e3a9a2089ce1660b50e49986587c99edb14dbd35d5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer</topic><topic>Carcinoma</topic><topic>Cell interactions</topic><topic>Communication</topic><topic>Computer applications</topic><topic>Crosstalk</topic><topic>Immune system</topic><topic>Inference</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Microenvironments</topic><topic>Receptors</topic><topic>Spatial data</topic><topic>Transcriptomics</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Lihong</creatorcontrib><creatorcontrib>Wang, Feixiang</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Tan, Jingwei</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Tian, Xiongfei</creatorcontrib><creatorcontrib>Liu, Guangyi</creatorcontrib><creatorcontrib>Zhou, Liqian</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Lihong</au><au>Wang, Feixiang</au><au>Wang, Zhao</au><au>Tan, Jingwei</au><au>Huang, Li</au><au>Tian, Xiongfei</au><au>Liu, Guangyi</au><au>Zhou, Liqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies</atitle><jtitle>Briefings in bioinformatics</jtitle><date>2022-07-18</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between and within various cell types in a tumour microenvironment. Focusing on the coordinated expression patterns of ligands and cognate receptors, cell–cell communication can be inferred through ligand–receptor interactions (LRIs). In this manuscript, we carry out the following work: (i) introduce pipeline for ligand–receptor-mediated intercellular communication estimation from single-cell transcriptomics and list a few available LRI-related databases and visualization tools; (ii) demonstrate seven classical intercellular communication scoring strategies, highlight four types of representative intercellular communication inference methods, including network-based approaches, machine learning-based approaches, spatial information-based approaches and other approaches; (iii) summarize the evaluation and validation avenues for intercellular communication inference and analyze the advantages and limitations for the above four types of cell–cell communication methods; (iv) comment several major challenges while provide further research directions for intercellular communication analysis in the tumour microenvironments. We anticipate that this work helps to better understand intercellular crosstalk and to further develop powerful cell–cell communication estimation tools for tumor-targeted therapy.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/bib/bbac234</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2022-07, Vol.23 (4)
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_2681443287
source Oxford Journals Open Access Collection
subjects Cancer
Carcinoma
Cell interactions
Communication
Computer applications
Crosstalk
Immune system
Inference
Ligands
Machine learning
Microenvironments
Receptors
Spatial data
Transcriptomics
Tumor microenvironment
Tumors
title Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%E2%80%93cell%20communication%20inference%20and%20analysis%20in%20the%20tumour%20microenvironments%20from%20single-cell%20transcriptomics:%20data%20resources%20and%20computational%20strategies&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Peng,%20Lihong&rft.date=2022-07-18&rft.volume=23&rft.issue=4&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbac234&rft_dat=%3Cproquest_TOX%3E2699593078%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699593078&rft_id=info:pmid/&rft_oup_id=10.1093/bib/bbac234&rfr_iscdi=true