Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies
Abstract Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2022-07, Vol.23 (4) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Briefings in bioinformatics |
container_volume | 23 |
creator | Peng, Lihong Wang, Feixiang Wang, Zhao Tan, Jingwei Huang, Li Tian, Xiongfei Liu, Guangyi Zhou, Liqian |
description | Abstract
Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between and within various cell types in a tumour microenvironment. Focusing on the coordinated expression patterns of ligands and cognate receptors, cell–cell communication can be inferred through ligand–receptor interactions (LRIs). In this manuscript, we carry out the following work: (i) introduce pipeline for ligand–receptor-mediated intercellular communication estimation from single-cell transcriptomics and list a few available LRI-related databases and visualization tools; (ii) demonstrate seven classical intercellular communication scoring strategies, highlight four types of representative intercellular communication inference methods, including network-based approaches, machine learning-based approaches, spatial information-based approaches and other approaches; (iii) summarize the evaluation and validation avenues for intercellular communication inference and analyze the advantages and limitations for the above four types of cell–cell communication methods; (iv) comment several major challenges while provide further research directions for intercellular communication analysis in the tumour microenvironments. We anticipate that this work helps to better understand intercellular crosstalk and to further develop powerful cell–cell communication estimation tools for tumor-targeted therapy. |
doi_str_mv | 10.1093/bib/bbac234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681443287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbac234</oup_id><sourcerecordid>2699593078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ef2c2fee43b6ad970248e3a9a2089ce1660b50e49986587c99edb14dbd35d5023</originalsourceid><addsrcrecordid>eNp9kc1KxDAQx4so-HnyBQKCCFJNk_Qj3mTxCwQvei5pOl2ztEnNpMLefAfvPpxPYnbXkwcPwwzhN_-ZzD9JjjN6kVHJLxvTXDaN0oyLrWQvE2WZCpqL7VVdlGkuCr6b7CMuKGW0rLK95GsGff_98aljItoNw2SNVsE4S4ztwIPVQJRtY6h-iQbjMwmvQMI0uMmTwWjvwL4b7-wANiDpvBsIGjvvIV2rBq8sam_G4CKNV6RVQREPGPs14Fo9Th6nsJ6reoKxJcDcAB4mO53qEY5-80HycnvzPLtPH5_uHmbXj6nmLA8pdEyzDkDwplCtLCkTFXAlFaOV1JAVBW1yCkLKqsirUksJbZOJtml53uaU8YPkbKM7evc2AYZ6MLjaXllwE9asqDIhOKvKiJ78QRfxI3HtFSVlLnm8bKTON1Q8D6KHrh69GZRf1hmtV17V0av616tIn25oN43_gj96uprD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699593078</pqid></control><display><type>article</type><title>Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies</title><source>Oxford Journals Open Access Collection</source><creator>Peng, Lihong ; Wang, Feixiang ; Wang, Zhao ; Tan, Jingwei ; Huang, Li ; Tian, Xiongfei ; Liu, Guangyi ; Zhou, Liqian</creator><creatorcontrib>Peng, Lihong ; Wang, Feixiang ; Wang, Zhao ; Tan, Jingwei ; Huang, Li ; Tian, Xiongfei ; Liu, Guangyi ; Zhou, Liqian</creatorcontrib><description>Abstract
Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between and within various cell types in a tumour microenvironment. Focusing on the coordinated expression patterns of ligands and cognate receptors, cell–cell communication can be inferred through ligand–receptor interactions (LRIs). In this manuscript, we carry out the following work: (i) introduce pipeline for ligand–receptor-mediated intercellular communication estimation from single-cell transcriptomics and list a few available LRI-related databases and visualization tools; (ii) demonstrate seven classical intercellular communication scoring strategies, highlight four types of representative intercellular communication inference methods, including network-based approaches, machine learning-based approaches, spatial information-based approaches and other approaches; (iii) summarize the evaluation and validation avenues for intercellular communication inference and analyze the advantages and limitations for the above four types of cell–cell communication methods; (iv) comment several major challenges while provide further research directions for intercellular communication analysis in the tumour microenvironments. We anticipate that this work helps to better understand intercellular crosstalk and to further develop powerful cell–cell communication estimation tools for tumor-targeted therapy.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbac234</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Cancer ; Carcinoma ; Cell interactions ; Communication ; Computer applications ; Crosstalk ; Immune system ; Inference ; Ligands ; Machine learning ; Microenvironments ; Receptors ; Spatial data ; Transcriptomics ; Tumor microenvironment ; Tumors</subject><ispartof>Briefings in bioinformatics, 2022-07, Vol.23 (4)</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-ef2c2fee43b6ad970248e3a9a2089ce1660b50e49986587c99edb14dbd35d5023</citedby><cites>FETCH-LOGICAL-c325t-ef2c2fee43b6ad970248e3a9a2089ce1660b50e49986587c99edb14dbd35d5023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbac234$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Peng, Lihong</creatorcontrib><creatorcontrib>Wang, Feixiang</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Tan, Jingwei</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Tian, Xiongfei</creatorcontrib><creatorcontrib>Liu, Guangyi</creatorcontrib><creatorcontrib>Zhou, Liqian</creatorcontrib><title>Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies</title><title>Briefings in bioinformatics</title><description>Abstract
Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between and within various cell types in a tumour microenvironment. Focusing on the coordinated expression patterns of ligands and cognate receptors, cell–cell communication can be inferred through ligand–receptor interactions (LRIs). In this manuscript, we carry out the following work: (i) introduce pipeline for ligand–receptor-mediated intercellular communication estimation from single-cell transcriptomics and list a few available LRI-related databases and visualization tools; (ii) demonstrate seven classical intercellular communication scoring strategies, highlight four types of representative intercellular communication inference methods, including network-based approaches, machine learning-based approaches, spatial information-based approaches and other approaches; (iii) summarize the evaluation and validation avenues for intercellular communication inference and analyze the advantages and limitations for the above four types of cell–cell communication methods; (iv) comment several major challenges while provide further research directions for intercellular communication analysis in the tumour microenvironments. We anticipate that this work helps to better understand intercellular crosstalk and to further develop powerful cell–cell communication estimation tools for tumor-targeted therapy.</description><subject>Cancer</subject><subject>Carcinoma</subject><subject>Cell interactions</subject><subject>Communication</subject><subject>Computer applications</subject><subject>Crosstalk</subject><subject>Immune system</subject><subject>Inference</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Microenvironments</subject><subject>Receptors</subject><subject>Spatial data</subject><subject>Transcriptomics</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAQx4so-HnyBQKCCFJNk_Qj3mTxCwQvei5pOl2ztEnNpMLefAfvPpxPYnbXkwcPwwzhN_-ZzD9JjjN6kVHJLxvTXDaN0oyLrWQvE2WZCpqL7VVdlGkuCr6b7CMuKGW0rLK95GsGff_98aljItoNw2SNVsE4S4ztwIPVQJRtY6h-iQbjMwmvQMI0uMmTwWjvwL4b7-wANiDpvBsIGjvvIV2rBq8sam_G4CKNV6RVQREPGPs14Fo9Th6nsJ6reoKxJcDcAB4mO53qEY5-80HycnvzPLtPH5_uHmbXj6nmLA8pdEyzDkDwplCtLCkTFXAlFaOV1JAVBW1yCkLKqsirUksJbZOJtml53uaU8YPkbKM7evc2AYZ6MLjaXllwE9asqDIhOKvKiJ78QRfxI3HtFSVlLnm8bKTON1Q8D6KHrh69GZRf1hmtV17V0av616tIn25oN43_gj96uprD</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Peng, Lihong</creator><creator>Wang, Feixiang</creator><creator>Wang, Zhao</creator><creator>Tan, Jingwei</creator><creator>Huang, Li</creator><creator>Tian, Xiongfei</creator><creator>Liu, Guangyi</creator><creator>Zhou, Liqian</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20220718</creationdate><title>Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies</title><author>Peng, Lihong ; Wang, Feixiang ; Wang, Zhao ; Tan, Jingwei ; Huang, Li ; Tian, Xiongfei ; Liu, Guangyi ; Zhou, Liqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ef2c2fee43b6ad970248e3a9a2089ce1660b50e49986587c99edb14dbd35d5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer</topic><topic>Carcinoma</topic><topic>Cell interactions</topic><topic>Communication</topic><topic>Computer applications</topic><topic>Crosstalk</topic><topic>Immune system</topic><topic>Inference</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Microenvironments</topic><topic>Receptors</topic><topic>Spatial data</topic><topic>Transcriptomics</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Lihong</creatorcontrib><creatorcontrib>Wang, Feixiang</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Tan, Jingwei</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Tian, Xiongfei</creatorcontrib><creatorcontrib>Liu, Guangyi</creatorcontrib><creatorcontrib>Zhou, Liqian</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Lihong</au><au>Wang, Feixiang</au><au>Wang, Zhao</au><au>Tan, Jingwei</au><au>Huang, Li</au><au>Tian, Xiongfei</au><au>Liu, Guangyi</au><au>Zhou, Liqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies</atitle><jtitle>Briefings in bioinformatics</jtitle><date>2022-07-18</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract
Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between and within various cell types in a tumour microenvironment. Focusing on the coordinated expression patterns of ligands and cognate receptors, cell–cell communication can be inferred through ligand–receptor interactions (LRIs). In this manuscript, we carry out the following work: (i) introduce pipeline for ligand–receptor-mediated intercellular communication estimation from single-cell transcriptomics and list a few available LRI-related databases and visualization tools; (ii) demonstrate seven classical intercellular communication scoring strategies, highlight four types of representative intercellular communication inference methods, including network-based approaches, machine learning-based approaches, spatial information-based approaches and other approaches; (iii) summarize the evaluation and validation avenues for intercellular communication inference and analyze the advantages and limitations for the above four types of cell–cell communication methods; (iv) comment several major challenges while provide further research directions for intercellular communication analysis in the tumour microenvironments. We anticipate that this work helps to better understand intercellular crosstalk and to further develop powerful cell–cell communication estimation tools for tumor-targeted therapy.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/bib/bbac234</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2022-07, Vol.23 (4) |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_proquest_miscellaneous_2681443287 |
source | Oxford Journals Open Access Collection |
subjects | Cancer Carcinoma Cell interactions Communication Computer applications Crosstalk Immune system Inference Ligands Machine learning Microenvironments Receptors Spatial data Transcriptomics Tumor microenvironment Tumors |
title | Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%E2%80%93cell%20communication%20inference%20and%20analysis%20in%20the%20tumour%20microenvironments%20from%20single-cell%20transcriptomics:%20data%20resources%20and%20computational%20strategies&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Peng,%20Lihong&rft.date=2022-07-18&rft.volume=23&rft.issue=4&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbac234&rft_dat=%3Cproquest_TOX%3E2699593078%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699593078&rft_id=info:pmid/&rft_oup_id=10.1093/bib/bbac234&rfr_iscdi=true |