Understanding immunological origins of atopic dermatitis through multi‐omic analysis

Background The pathophysiology of atopic dermatitis (AD) is multifactorial, impacted by individual medical, demographic, environmental, and immunologic factors. This study used multi‐omic analyses to assess how host and microbial factors could contribute to infant AD development. Methods This longit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric allergy and immunology 2022-06, Vol.33 (6), p.e13817-n/a
Hauptverfasser: Beheshti, Ramin, Halstead, Scott, McKeone, Daniel, Hicks, Steven D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e13817
container_title Pediatric allergy and immunology
container_volume 33
creator Beheshti, Ramin
Halstead, Scott
McKeone, Daniel
Hicks, Steven D.
description Background The pathophysiology of atopic dermatitis (AD) is multifactorial, impacted by individual medical, demographic, environmental, and immunologic factors. This study used multi‐omic analyses to assess how host and microbial factors could contribute to infant AD development. Methods This longitudinal cohort study included 129 term infants, identified as AD (n = 37) or non‐AD (n = 92) using the Infant Feeding Practices‐II survey and review of medical records. Standardized surveys were used to assess medical and demographic traits (gestational age, sex, race, maternal AD, and atopy family history), and environmental exposures (delivery method, maternal tobacco use, pets, breastfeeding duration, and timing of solid food introduction). Saliva was collected at 6 months for multi‐omic assessment of cytokines, microRNAs, mRNAs, and the microbiome. The contribution of each factor to AD status was assessed with logistic regression. Results Medical, demographic, and environmental factors did not differ between AD and non‐AD infants. Five “omic” factors (IL‐8/IL‐6, miR‐375‐3p, miR‐21‐5p, bacterial diversity, and Proteobacteria) differed between groups (p 
doi_str_mv 10.1111/pai.13817
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681442663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680925791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2607-ed70a111520afe004c2bb22f2618566a6bdc4bb05c24c0f28c50dd26056e86ab3</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpDLxBJBYYUs5O7CRjVfFRqRIMlNVyHCd15cTFToS68Qg8I0-CaZiQuOWG-93p9EfoEsMMh7rdCT3DSY6zIzTBSVHECST5MZpAATRmmGan6Mz7LQDOEoYn6HXdVcr5XnSV7ppIt-3QWWMbLYWJrNON7nxk60j0dqdlFGwret1rH_UbZ4dmE7WD6fXXx6dtw1x0wuy99ufopBbGq4vfPkXr-7uXxWO8enpYLuarWBIGWayqDER4mxIQtQJIJSlLQmrCcE4ZE6ysZFqWQCVJJdQklxSqKqxSpnImymSKrse7O2ffBuV73movlTGiU3bwnLAcpylhLAn06g_d2sGFfw8KCkKzAgd1MyrprPdO1XzndCvcnmPgPwnzkDA_JBzs7WjftVH7_yF_ni_HjW8uNX6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680925791</pqid></control><display><type>article</type><title>Understanding immunological origins of atopic dermatitis through multi‐omic analysis</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Beheshti, Ramin ; Halstead, Scott ; McKeone, Daniel ; Hicks, Steven D.</creator><creatorcontrib>Beheshti, Ramin ; Halstead, Scott ; McKeone, Daniel ; Hicks, Steven D.</creatorcontrib><description>Background The pathophysiology of atopic dermatitis (AD) is multifactorial, impacted by individual medical, demographic, environmental, and immunologic factors. This study used multi‐omic analyses to assess how host and microbial factors could contribute to infant AD development. Methods This longitudinal cohort study included 129 term infants, identified as AD (n = 37) or non‐AD (n = 92) using the Infant Feeding Practices‐II survey and review of medical records. Standardized surveys were used to assess medical and demographic traits (gestational age, sex, race, maternal AD, and atopy family history), and environmental exposures (delivery method, maternal tobacco use, pets, breastfeeding duration, and timing of solid food introduction). Saliva was collected at 6 months for multi‐omic assessment of cytokines, microRNAs, mRNAs, and the microbiome. The contribution of each factor to AD status was assessed with logistic regression. Results Medical, demographic, and environmental factors did not differ between AD and non‐AD infants. Five “omic” factors (IL‐8/IL‐6, miR‐375‐3p, miR‐21‐5p, bacterial diversity, and Proteobacteria) differed between groups (p &lt; .05). The severity of AD was positively associated with levels of miR‐375‐3p (R = .17, p = .049) and Proteobacteria (R = .22, p = .011), and negatively associated with levels of miR‐21‐5p (R = .20, p = .022). Multi‐omic features accounted for 17% of variance between groups, significantly improving an AD risk model employing medical, demographic, and environmental factors (X2 = 32.47, p = .006). Conclusion Interactions between the microbiome and host signaling may predispose certain infants to AD by promoting a pro‐inflammatory environment.</description><identifier>ISSN: 0905-6157</identifier><identifier>EISSN: 1399-3038</identifier><identifier>DOI: 10.1111/pai.13817</identifier><language>eng</language><publisher>Montpellier: Wiley Subscription Services, Inc</publisher><subject>allergy ; Atopic dermatitis ; atopy ; biomarkers ; Breast feeding ; cytokines ; Demography ; Dermatitis ; Eczema ; Environmental factors ; Gestational age ; Infants ; Inflammation ; Interleukin 6 ; Medical records ; microbiome ; Microbiomes ; miRNA ; oropharynx ; Pets ; Proteobacteria ; Saliva ; Surveys</subject><ispartof>Pediatric allergy and immunology, 2022-06, Vol.33 (6), p.e13817-n/a</ispartof><rights>2022 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.</rights><rights>Copyright © 2022 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2607-ed70a111520afe004c2bb22f2618566a6bdc4bb05c24c0f28c50dd26056e86ab3</citedby><cites>FETCH-LOGICAL-c2607-ed70a111520afe004c2bb22f2618566a6bdc4bb05c24c0f28c50dd26056e86ab3</cites><orcidid>0000-0002-0817-844X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpai.13817$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpai.13817$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Beheshti, Ramin</creatorcontrib><creatorcontrib>Halstead, Scott</creatorcontrib><creatorcontrib>McKeone, Daniel</creatorcontrib><creatorcontrib>Hicks, Steven D.</creatorcontrib><title>Understanding immunological origins of atopic dermatitis through multi‐omic analysis</title><title>Pediatric allergy and immunology</title><description>Background The pathophysiology of atopic dermatitis (AD) is multifactorial, impacted by individual medical, demographic, environmental, and immunologic factors. This study used multi‐omic analyses to assess how host and microbial factors could contribute to infant AD development. Methods This longitudinal cohort study included 129 term infants, identified as AD (n = 37) or non‐AD (n = 92) using the Infant Feeding Practices‐II survey and review of medical records. Standardized surveys were used to assess medical and demographic traits (gestational age, sex, race, maternal AD, and atopy family history), and environmental exposures (delivery method, maternal tobacco use, pets, breastfeeding duration, and timing of solid food introduction). Saliva was collected at 6 months for multi‐omic assessment of cytokines, microRNAs, mRNAs, and the microbiome. The contribution of each factor to AD status was assessed with logistic regression. Results Medical, demographic, and environmental factors did not differ between AD and non‐AD infants. Five “omic” factors (IL‐8/IL‐6, miR‐375‐3p, miR‐21‐5p, bacterial diversity, and Proteobacteria) differed between groups (p &lt; .05). The severity of AD was positively associated with levels of miR‐375‐3p (R = .17, p = .049) and Proteobacteria (R = .22, p = .011), and negatively associated with levels of miR‐21‐5p (R = .20, p = .022). Multi‐omic features accounted for 17% of variance between groups, significantly improving an AD risk model employing medical, demographic, and environmental factors (X2 = 32.47, p = .006). Conclusion Interactions between the microbiome and host signaling may predispose certain infants to AD by promoting a pro‐inflammatory environment.</description><subject>allergy</subject><subject>Atopic dermatitis</subject><subject>atopy</subject><subject>biomarkers</subject><subject>Breast feeding</subject><subject>cytokines</subject><subject>Demography</subject><subject>Dermatitis</subject><subject>Eczema</subject><subject>Environmental factors</subject><subject>Gestational age</subject><subject>Infants</subject><subject>Inflammation</subject><subject>Interleukin 6</subject><subject>Medical records</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>miRNA</subject><subject>oropharynx</subject><subject>Pets</subject><subject>Proteobacteria</subject><subject>Saliva</subject><subject>Surveys</subject><issn>0905-6157</issn><issn>1399-3038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpDLxBJBYYUs5O7CRjVfFRqRIMlNVyHCd15cTFToS68Qg8I0-CaZiQuOWG-93p9EfoEsMMh7rdCT3DSY6zIzTBSVHECST5MZpAATRmmGan6Mz7LQDOEoYn6HXdVcr5XnSV7ppIt-3QWWMbLYWJrNON7nxk60j0dqdlFGwret1rH_UbZ4dmE7WD6fXXx6dtw1x0wuy99ufopBbGq4vfPkXr-7uXxWO8enpYLuarWBIGWayqDER4mxIQtQJIJSlLQmrCcE4ZE6ysZFqWQCVJJdQklxSqKqxSpnImymSKrse7O2ffBuV73movlTGiU3bwnLAcpylhLAn06g_d2sGFfw8KCkKzAgd1MyrprPdO1XzndCvcnmPgPwnzkDA_JBzs7WjftVH7_yF_ni_HjW8uNX6E</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Beheshti, Ramin</creator><creator>Halstead, Scott</creator><creator>McKeone, Daniel</creator><creator>Hicks, Steven D.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0817-844X</orcidid></search><sort><creationdate>202206</creationdate><title>Understanding immunological origins of atopic dermatitis through multi‐omic analysis</title><author>Beheshti, Ramin ; Halstead, Scott ; McKeone, Daniel ; Hicks, Steven D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2607-ed70a111520afe004c2bb22f2618566a6bdc4bb05c24c0f28c50dd26056e86ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>allergy</topic><topic>Atopic dermatitis</topic><topic>atopy</topic><topic>biomarkers</topic><topic>Breast feeding</topic><topic>cytokines</topic><topic>Demography</topic><topic>Dermatitis</topic><topic>Eczema</topic><topic>Environmental factors</topic><topic>Gestational age</topic><topic>Infants</topic><topic>Inflammation</topic><topic>Interleukin 6</topic><topic>Medical records</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>miRNA</topic><topic>oropharynx</topic><topic>Pets</topic><topic>Proteobacteria</topic><topic>Saliva</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beheshti, Ramin</creatorcontrib><creatorcontrib>Halstead, Scott</creatorcontrib><creatorcontrib>McKeone, Daniel</creatorcontrib><creatorcontrib>Hicks, Steven D.</creatorcontrib><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Pediatric allergy and immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beheshti, Ramin</au><au>Halstead, Scott</au><au>McKeone, Daniel</au><au>Hicks, Steven D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding immunological origins of atopic dermatitis through multi‐omic analysis</atitle><jtitle>Pediatric allergy and immunology</jtitle><date>2022-06</date><risdate>2022</risdate><volume>33</volume><issue>6</issue><spage>e13817</spage><epage>n/a</epage><pages>e13817-n/a</pages><issn>0905-6157</issn><eissn>1399-3038</eissn><abstract>Background The pathophysiology of atopic dermatitis (AD) is multifactorial, impacted by individual medical, demographic, environmental, and immunologic factors. This study used multi‐omic analyses to assess how host and microbial factors could contribute to infant AD development. Methods This longitudinal cohort study included 129 term infants, identified as AD (n = 37) or non‐AD (n = 92) using the Infant Feeding Practices‐II survey and review of medical records. Standardized surveys were used to assess medical and demographic traits (gestational age, sex, race, maternal AD, and atopy family history), and environmental exposures (delivery method, maternal tobacco use, pets, breastfeeding duration, and timing of solid food introduction). Saliva was collected at 6 months for multi‐omic assessment of cytokines, microRNAs, mRNAs, and the microbiome. The contribution of each factor to AD status was assessed with logistic regression. Results Medical, demographic, and environmental factors did not differ between AD and non‐AD infants. Five “omic” factors (IL‐8/IL‐6, miR‐375‐3p, miR‐21‐5p, bacterial diversity, and Proteobacteria) differed between groups (p &lt; .05). The severity of AD was positively associated with levels of miR‐375‐3p (R = .17, p = .049) and Proteobacteria (R = .22, p = .011), and negatively associated with levels of miR‐21‐5p (R = .20, p = .022). Multi‐omic features accounted for 17% of variance between groups, significantly improving an AD risk model employing medical, demographic, and environmental factors (X2 = 32.47, p = .006). Conclusion Interactions between the microbiome and host signaling may predispose certain infants to AD by promoting a pro‐inflammatory environment.</abstract><cop>Montpellier</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/pai.13817</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0817-844X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0905-6157
ispartof Pediatric allergy and immunology, 2022-06, Vol.33 (6), p.e13817-n/a
issn 0905-6157
1399-3038
language eng
recordid cdi_proquest_miscellaneous_2681442663
source Wiley Online Library - AutoHoldings Journals
subjects allergy
Atopic dermatitis
atopy
biomarkers
Breast feeding
cytokines
Demography
Dermatitis
Eczema
Environmental factors
Gestational age
Infants
Inflammation
Interleukin 6
Medical records
microbiome
Microbiomes
miRNA
oropharynx
Pets
Proteobacteria
Saliva
Surveys
title Understanding immunological origins of atopic dermatitis through multi‐omic analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20immunological%20origins%20of%20atopic%20dermatitis%20through%20multi%E2%80%90omic%20analysis&rft.jtitle=Pediatric%20allergy%20and%20immunology&rft.au=Beheshti,%20Ramin&rft.date=2022-06&rft.volume=33&rft.issue=6&rft.spage=e13817&rft.epage=n/a&rft.pages=e13817-n/a&rft.issn=0905-6157&rft.eissn=1399-3038&rft_id=info:doi/10.1111/pai.13817&rft_dat=%3Cproquest_cross%3E2680925791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680925791&rft_id=info:pmid/&rfr_iscdi=true