Transcatheter Pulmonary Valve Replacement from Autologous Pericardium with a Self-Expandable Nitinol Stent in an Adult Sheep Model

Transcatheter pulmonary valve replacement has been established as a viable alternative approach for patients suffering from right ventricular outflow tract or bioprosthetic valve dysfunction, with excellent early and late clinical outcomes. However, clinical challenges such as stented heart valve de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Visualized Experiments 2022-06 (184)
Hauptverfasser: Hao, Yimeng, Sun, Xiaolin, Kiekenap, Jonathan Frederik Sebastian, Emeis, Jasper, Steitz, Marvin, Breitenstein-Attach, Alexander, Berger, Felix, Schmitt, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transcatheter pulmonary valve replacement has been established as a viable alternative approach for patients suffering from right ventricular outflow tract or bioprosthetic valve dysfunction, with excellent early and late clinical outcomes. However, clinical challenges such as stented heart valve deterioration, coronary occlusion, endocarditis, and other complications must be addressed for lifetime application, particularly in pediatric patients. To facilitate the development of a lifelong solution for patients, transcatheter autologous pulmonary valve replacement was performed in an adult sheep model. The autologous pericardium was harvested from the sheep via left anterolateral minithoracotomy under general anesthesia with ventilation. The pericardium was placed on a 3D shaping heart valve model for non-toxic cross-linking for 2 days and 21 h. Intracardiac echocardiography (ICE) and angiography were performed to assess the position, morphology, function, and dimensions of the native pulmonary valve (NPV). After trimming, the crosslinked pericardium was sewn onto a self-expandable Nitinol stent and crimped into a self-designed delivery system. The autologous pulmonary valve (APV) was implanted at the NPV position via left jugular vein catheterization. ICE and angiography were repeated to evaluate the position, morphology, function, and dimensions of the APV. An APV was successfully implanted in sheep J. In this paper, sheep J was selected to obtain representative results. A 30 mm APV with a Nitinol stent was accurately implanted at the NPV position without any significant hemodynamic change. There was no paravalvular leak, no new pulmonary valve insufficiency, or stented pulmonary valve migration. This study demonstrated the feasibility and safety, in a long-time follow-up, of developing an APV for implantation at the NPV position with a self-expandable Nitinol stent via jugular vein catheterization in an adult sheep model.
ISSN:1940-087X
1940-087X
DOI:10.3791/63661