A three-dimensional photonic crystal operating at infrared wavelengths
The ability to confine and control light in three dimensions would have important implications for quantum optics and quantum-optical devices: the modification of black-body radiation, the localization of light to a fraction of a cubic wavelength, and thus the realization of single-mode light-emitti...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1998-07, Vol.394 (6690), p.251-253 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to confine and control light in three dimensions would have important implications for quantum optics and quantum-optical devices: the modification of black-body radiation, the localization of light to a fraction of a cubic wavelength, and thus the realization of single-mode light-emitting diodes, are but a few examples
1
,
2
,
3
. Photonic crystals — the optical analogues of electronic crystal — provide a means for achieving these goals. Combinations of metallic and dielectric materials can be used to obtain the required three-dimensional periodic variations in dielectric constant, but dissipation due to free carrier absorption will limit application of such structures at the technologically useful infrared wavelengths
4
. On the other hand, three-dimensional photonic crystals fabricated in low-loss gallium arsenide show only a weak ‘stop band’ (that is, range of frequencies at which propagation of light is forbidden) at the wavelengths of interest
5
. Here we report the construction of a three-dimensional infrared photonic crystal on a silicon wafer using relatively standard microelectronics fabrication technology. Our crystal shows a large stop band (10–14.5 μm), strong attenuation of light within this band (∼12 dB per unit cell) and a spectral response uniform to better than 1 per cent over the area of the 6-inch wafer. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/28343 |