Effect of organic substrate and Fe oxides transformation on the mobility of arsenic by biotic reductive dissolution under repetitive redox conditions

The mobility of arsenic (As) in soil is highly affected by the change in the form of iron oxides present in the soil, which has a strong correlation with the change in redox potential. In this study, the altered mobility of As under repetitive redox conditions and the effect of organic substrates (i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2022-10, Vol.305, p.135431-135431, Article 135431
Hauptverfasser: Park, Sujin, Kim, Sang Hyun, Chung, Hyeonyong, An, Jinsung, Nam, Kyoungphile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mobility of arsenic (As) in soil is highly affected by the change in the form of iron oxides present in the soil, which has a strong correlation with the change in redox potential. In this study, the altered mobility of As under repetitive redox conditions and the effect of organic substrates (i.e., glucose) on such change during four anoxic-oxic cycles were studied. During the 1st anoxic period, 37.1% of soil As was released into the soil solution, but the As in the soil solution decreased to 25.2% after the 1st oxic period. Moreover, the As in the soil solution further decreased during the 2nd to 4th oxic periods, indicating further re-adsorption of aqueous As. The analysis of As speciation revealed that inorganic arsenate (As(V)) increased under the redox-oscillating conditions, probably due to the depletion of electron donors. When glucose was re-spiked at the beginning of the 4th cycle, aqueous As increased to 47.3% again in the anoxic period and decreased to 27.6% in the subsequent oxic period, indicating inhibition of As re-adsorption. During the same period, the amount of highly sorptive As(V) in the solution decreased sharply to less than 3.3%. The X-ray absorption near edge structure analysis with linear combination fitting confirmed that the transformation of Fe oxides to poorly crystalline structures such as ferrihydrite occurred during repetitive cycles. These results imply that the mobility of As can be increased in As-contaminated redox transition zones by the introduction of rainfall with labile organics or by the fluctuation of organic-rich groundwater. [Display omitted] •Mobility of As changes under repetitive redox conditions.•Re-adsorption of As under oxic conditions increases with repeated redox cycles.•Introduction of an electron donor decreased As(V), making aqueous As more mobile.•Transformation of Fe oxides to a poorly ordered form (ferrihydrite) was observed.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2022.135431