In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries

All-solid-state batteries (ASSBs), particularly based on sulfide solid-state electrolytes (SSEs), are expected to meet the requirements of high-energy-density energy storage. However, the unstable interface between the ceramic pellets and lithium (Li) metal can induce unconstrained Li-dendrite growt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-07, Vol.14 (26), p.29878-29885
Hauptverfasser: Jiao, Tianpeng, Xia, Meng, Chen, Zirong, Zou, Yue, Liu, Gaopan, Fu, Ang, Chen, Libao, Gong, Zhengliang, Yang, Yong, Zheng, Jianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All-solid-state batteries (ASSBs), particularly based on sulfide solid-state electrolytes (SSEs), are expected to meet the requirements of high-energy-density energy storage. However, the unstable interface between the ceramic pellets and lithium (Li) metal can induce unconstrained Li-dendrite growth with safety concerns. Herein, we design a carbon fluoride–silver (CF x –Ag) composite to modify the SSEs. As lithium fluoride (LiF) nanocrystals can be in situ formed through electrochemical reactions, this LiF-enriched modification layer with high surface energy can more effectively suppress Li dendrite penetration and interfacial reactions between the SSEs and anode. Remarkably, the all-solid-state symmetric cells using a lithium–boron alloy (LiB) anode can stably work to above 2,500 h under 0.5 mA cm–2 and 2 mAh cm–2 at 60 °C without shorting. A modified LiB||LiNi0.6Mn0.2Co0.2O2 (NMC622) full cell also demonstrates an improved capacity retention and high Coulombic efficiency (99.9%) over 500 cycles. This work provides an advanced solid-state interface architecture to address Li-dendrite issues of ASSBs.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c06700