Mechanistic and modeling insights into the immobilization of Cd and organic carbon during abiotic transformation of ferrihydrite induced by Fe(II)

Iron (Fe) oxides and fulvic acid (FA) are the key components affecting the fate of cadmium (Cd) in soil. The presence of FA influences Fe mineral transformation, and FA may complicate phase transformation and dynamic behavior of Cd. How varying Fe minerals and FA affect Cd immobilization during the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2022-08, Vol.436, p.129216-129216, Article 129216
Hauptverfasser: Shen, Xinyue, Zhu, Huiyan, Wang, Pei, Zheng, Lirong, Hu, Shiwen, Liu, Chongxuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iron (Fe) oxides and fulvic acid (FA) are the key components affecting the fate of cadmium (Cd) in soil. The presence of FA influences Fe mineral transformation, and FA may complicate phase transformation and dynamic behavior of Cd. How varying Fe minerals and FA affect Cd immobilization during the ferrihydrite transformation induced by various Fe(II) concentrations, however, is still lack of quantitative understanding. In this study, we built a model for Cd species quantification during phase transformation based on mechanistic insights obtained from batch experiments. Spectroscopic analysis showed that Fe(II) concentrations affected secondary Fe minerals formation under the condition of co-existence of Cd and FA, and ultimately changed the distribution of Cd and FA. Microscopic analysis revealed that besides surface adsorption, part of Cd was sequestrated by magnetite, whereas FA was able to diffuse into lepidocrocite defects. The model revealed that adsorbed Cd was mainly controlled by FA and ferrihydrite, and direct complexation of Cd by FA had a strong impact on the continuous change in Cd at lower Fe(II) concentration. The results contribute to an in-depth understanding of the mobility of Cd in the environment and provide a method for quantifying the dynamic behavior of heavy metals in multi-reactant systems. [Display omitted] •High concentration of Fe(II) is beneficial to the Cd incorporation.•Cd distribution was quantitatively assessed by an integrated surface complexation model.•Adsorbed Cd was mainly controlled by fulvic acid and ferrihydrite.•Quantitative mode can assess the roles of each reactant for Cd adsorption.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2022.129216