Microstructure and intermetallic growth effects on shear and fatigue strength of solder joints subjected to thermal cycling aging
Microstructure development of eutectic solder alloy (63Sn/37Pb) after thermal cycling aging and its impact on the shear and fatigue failure of the solder joint has been investigated. The solder microstructure changes with the reflow process and subsequent thermal cycling environments in solder joint...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2001-06, Vol.307 (1), p.42-50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microstructure development of eutectic solder alloy (63Sn/37Pb) after thermal cycling aging and its impact on the shear and fatigue failure of the solder joint has been investigated. The solder microstructure changes with the reflow process and subsequent thermal cycling environments in solder joint reliability tests from −40 to 125°C. In service, solder joints are subjected to thermal cycling aging, corresponding to power on–off cycling of the electronic equipment or cyclic environmental temperature loading, leading to thermal fatigue failures. Thus, it is important to study the effect of the microstructure changes, mechanical strength and fatigue resistance of solder before and after thermal cycling aging. A new specimen design has been developed to closely resemble the actual electronic packaging assembly condition. The joint is made simply by soldering a solder ball between two FR-4 substrates with copper pads using the reflow process. The study shows that the solder microstructure coarsened and intermetallic compound layers grew after 500, 1000 and 2000 thermal cycles. The shear and fatigue strength of the solder joint decreased with increased exposure to thermal cycling aging effects. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/S0921-5093(00)01958-4 |