Synthesis of cascade recurrent neural networks using feedforward generalization properties
This paper presents a new analysis and synthesis technique for a class of recurrent networks known as a Cascade Recurrent Network (CRN). In this technique, a feedforward (FF) sub-network is used with synchronous feedback to implement associative memory (AM). FF network mapping properties are shown t...
Gespeichert in:
Veröffentlicht in: | Information sciences 1998-07, Vol.108 (1), p.207-217 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a new analysis and synthesis technique for a class of recurrent networks known as a Cascade Recurrent Network (CRN). In this technique, a feedforward (FF) sub-network is used with synchronous feedback to implement associative memory (AM). FF network mapping properties are shown to determine CRN stability, and, on the basis of this stability-mapping relation, a new synthesis technique is given. This technique utilizes the optimization of the FF mapping sub-network generalization as a synthesis procedure for CRN. Sample results are shown. |
---|---|
ISSN: | 0020-0255 1872-6291 |
DOI: | 10.1016/S0020-0255(97)10060-3 |