Synthesis of cascade recurrent neural networks using feedforward generalization properties

This paper presents a new analysis and synthesis technique for a class of recurrent networks known as a Cascade Recurrent Network (CRN). In this technique, a feedforward (FF) sub-network is used with synchronous feedback to implement associative memory (AM). FF network mapping properties are shown t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 1998-07, Vol.108 (1), p.207-217
Hauptverfasser: Shaaban, Khaled M., Schalkoff, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new analysis and synthesis technique for a class of recurrent networks known as a Cascade Recurrent Network (CRN). In this technique, a feedforward (FF) sub-network is used with synchronous feedback to implement associative memory (AM). FF network mapping properties are shown to determine CRN stability, and, on the basis of this stability-mapping relation, a new synthesis technique is given. This technique utilizes the optimization of the FF mapping sub-network generalization as a synthesis procedure for CRN. Sample results are shown.
ISSN:0020-0255
1872-6291
DOI:10.1016/S0020-0255(97)10060-3