Derailed peripheral circadian genes in polycystic ovary syndrome patients alters peripheral conversion of androgens synthesis

Abstract STUDY QUESTION Do circadian genes exhibit an altered profile in peripheral blood mononuclear cells (PBMCs) of polycystic ovary syndrome (PCOS) patients and do they have a potential role in androgen excess? SUMMARY ANSWER Our findings revealed that an impaired circadian clock could hamper th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human reproduction (Oxford) 2022-07, Vol.37 (8), p.1835-1855
Hauptverfasser: Johnson, Betcy Susan, Krishna, Meera B, Padmanabhan, Renjini A, Pillai, Sathy M, Jayakrishnan, K, Laloraya, Malini
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract STUDY QUESTION Do circadian genes exhibit an altered profile in peripheral blood mononuclear cells (PBMCs) of polycystic ovary syndrome (PCOS) patients and do they have a potential role in androgen excess? SUMMARY ANSWER Our findings revealed that an impaired circadian clock could hamper the regulation of peripheral steroid metabolism in PCOS women. WHAT IS KNOWN ALREADY PCOS patients exhibit features of metabolic syndrome. Circadian rhythm disruption is involved in the development of metabolic diseases and subfertility. An association between shift work and the incidence of PCOS in females was recently reported. STUDY DESIGN, SIZE, DURATION This is a retrospective case-referent study in which peripheral blood samples were obtained from 101 control and 101 PCOS subjects. PCOS diagnoses were based on Rotterdam Consensus criteria. PARTICIPANTS/MATERIALS, SETTING, METHODS This study comprised 101 women with PCOS and 101 control volunteers, as well as Swiss albino mice treated with dehydroepiandrosterone (DHEA) to induce PCOS development. Gene expression analyses of circadian and steroidogenesis genes in human PBMC and mice ovaries and blood were executed by quantitative real-time PCR. MAIN RESULTS AND THE ROLE OF CHANCE We observed aberrant expression of peripheral circadian clock genes in PCOS, with a significant reduction in the core clock genes, circadian locomotor output cycles kaput (CLOCK) (P ≤ 0.00001), brain and muscle ARNT-like 1 (BMAL1) (P ≤ 0.00001) and NPAS2 (P ≤ 0.001), and upregulation of their negative feedback loop genes, CRY1 (P ≤ 0.00003), CRY2 (P ≤ 0.00006), PER1 (P ≤ 0.003), PER2 (P ≤ 0.002), DEC1 (P ≤ 0.0001) and DEC2 (P ≤ 0.00005). Transcript levels of an additional feedback loop regulating BMAL1 showed varied expression, with reduced RORA (P ≤ 0.008) and increased NR1D1 (P ≤ 0.02) in PCOS patients in comparison with the control group. We also demonstrated the expression pattern of clock genes in PBMCs of PCOS women at three different time points. PCOS patients also exhibited increased mRNA levels of steroidogenic enzymes like StAR (P ≤ 0.0005), CYP17A1 (P ≤ 0.005), SRD5A1 (P ≤ 0.00006) and SRD5A2 (P ≤ 0.009). Knockdown of CLOCK/BMAL1 in PBMCs resulted in a significant reduction in estradiol production, by reducing CYP19A1 and a significant increase in dihydrotestosterone production, by upregulating SRD5A1 and SRD5A2 in PBMCs. Our data also showed that CYP17A1 as a direct CLOCK-BMAL1 target in PBMCs. Phenotypic classification of
ISSN:0268-1161
1460-2350
DOI:10.1093/humrep/deac139