Highly effective electrocatalytic reduction of N-nitrosodimethylamine on Ru/CNT catalyst

N-Nitrosodimethylamine (NDMA) is a commonly identified carcinogenic and genotoxic pollutant in water. In this study, we prepared Ru catalysts supported on carbon nanotube (Ru/CNT) and studied the electrocatalytic reduction of N-nitrosamines on Ru/CNT electrode in a three-electrode system. The result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2022-10, Vol.305, p.135414-135414, Article 135414
Hauptverfasser: Sun, Yuhan, Sun, Su, Wu, Tianyi, Qu, Xiaolei, Zheng, Shourong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:N-Nitrosodimethylamine (NDMA) is a commonly identified carcinogenic and genotoxic pollutant in water. In this study, we prepared Ru catalysts supported on carbon nanotube (Ru/CNT) and studied the electrocatalytic reduction of N-nitrosamines on Ru/CNT electrode in a three-electrode system. The results show that Ru-based catalyst exhibits a high activity of 793.3 μmol L−1 gCat−1 h−1 for electrochemical reduction of NDMA. Reaction mechanism study discloses that the electrocatalytic reduction of NDMA is accomplished by both direct electron reduction and atomic H* mediated indirect reduction pathways. Further product analysis indicates that NDMA is finally reduced to dimethylamine (DMA) and ammonia. The reduction efficiency of NDMA strongly relies on cathode potential, initial NDMA concentration and solution pH. To verify the universality of Ru/CNT electrode, electrocatalytic reduction of three dialkyl N-nitrosamines with different alkyl groups was performed and Ru catalyst has high catalytic activities for the three N-nitrosamines, while the catalytic efficiency differs with their structures. Simultaneous electrochemical reduction of the three N-nitrosamines indicates that the reduction rates of N-nitrosamines follow the same order in the multiple-component system as that in the single-component system. Catalyst recycling results demonstrate that after 5 consecutive recycling runs Ru/CNT electrode remains almost identical catalytic activity to the fresh catalyst, manifesting the high catalytic stability of Ru/CNT electrode. [Display omitted] •CNTs supported Pt group metals are applied in electrocatalytic NDMA reduction.•Ru/CNT has a higher catalytic activity than other Pt group metal catalysts.•NDMA reduction is implemented via both direct and indirect pathways.•Ru/CNT is highly active in the electrocatalytic reduction of different Nitrosamines.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2022.135414