Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy
Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2022-07, Vol.51 (26), p.10085-10094 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10094 |
---|---|
container_issue | 26 |
container_start_page | 10085 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 51 |
creator | Wang, Hua Li, Enzhu Xing, Mengjiang Zhong, Chaowei |
description | Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of Wrec = 2.68 J cm−3 and an ultrahigh efficiency of η = 90% are simultaneously achieved in the 0.90NaNbO3–0.10BaTiO3 ceramic by doping (Bi0.7La0.3)(Mg0.67Ta0.33)O3 (NNBT–xBLMT). Due to its high bandgap, the NNBT–0.10BLMT ceramic has a large dielectric breakdown strength (BDS) of 414 kV cm−1, consistent with the first-principles calculation based on density functional theory (DFT). Moreover, the NNBT–0.10BLMT ceramic exhibits excellent charge/discharge characteristics, with an ultrahigh current density CD of 526.06 A cm−2 and a high power density PD of 52.61 MW cm−3. In particular, the NNBT–0.10BLMT ceramic exhibits an outstanding temperature (20 °C–110 °C), frequency (10 Hz–120 Hz), and cycling (104 cycles) stability, highlighting its application potential in MLCCs. |
doi_str_mv | 10.1039/d2dt01265k |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2679698491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679698491</sourcerecordid><originalsourceid>FETCH-LOGICAL-p131t-46dd57dd946bd5798070b46c11da42c669ec364a873514dd9899d2d17ac293473</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhi0EEqWw8ASWWFhSfIsdj6WigFS1S5kr13ZTl8QucVIpGwtPwBvyJJiLGJjOf6RP3_l1ALjEaIQRlTeGmBZhwvPnIzDATIhMEsqO_zLhp-Asxh1ChKCcDMDbWG-dPThfwq5qG7V15RZab5uyh7ENjSotNNZH1_ZQeQPtZuO0s1730HmIRhLN1Xy9oB-v718VbtXSLSjUtlG10xEenIIK6lDvQ1K44GEdjEsK9b3EdLG1ZX8OTjaqivbidw7B0_RuOXnIZov7x8l4lu0xxW3GuDG5MEYyvk5BFkigNeMaY6MY0ZxLqylnqhA0xyxxhZTpI1goTSRlgg7B9Y9334SXzsZ2VbuobVUpb0MXV4QLyWXBJE7o1T90F7rGp3aJKlheyFxy-gkLx3Ec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684589596</pqid></control><display><type>article</type><title>Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Hua ; Li, Enzhu ; Xing, Mengjiang ; Zhong, Chaowei</creator><creatorcontrib>Wang, Hua ; Li, Enzhu ; Xing, Mengjiang ; Zhong, Chaowei</creatorcontrib><description>Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of Wrec = 2.68 J cm−3 and an ultrahigh efficiency of η = 90% are simultaneously achieved in the 0.90NaNbO3–0.10BaTiO3 ceramic by doping (Bi0.7La0.3)(Mg0.67Ta0.33)O3 (NNBT–xBLMT). Due to its high bandgap, the NNBT–0.10BLMT ceramic has a large dielectric breakdown strength (BDS) of 414 kV cm−1, consistent with the first-principles calculation based on density functional theory (DFT). Moreover, the NNBT–0.10BLMT ceramic exhibits excellent charge/discharge characteristics, with an ultrahigh current density CD of 526.06 A cm−2 and a high power density PD of 52.61 MW cm−3. In particular, the NNBT–0.10BLMT ceramic exhibits an outstanding temperature (20 °C–110 °C), frequency (10 Hz–120 Hz), and cycling (104 cycles) stability, highlighting its application potential in MLCCs.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d2dt01265k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capacitors ; Ceramics ; Charge density ; Density functional theory ; Dielectric breakdown ; Dielectric strength ; Discharge ; Energy storage ; First principles ; Flux density ; Thermal stability</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2022-07, Vol.51 (26), p.10085-10094</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Li, Enzhu</creatorcontrib><creatorcontrib>Xing, Mengjiang</creatorcontrib><creatorcontrib>Zhong, Chaowei</creatorcontrib><title>Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of Wrec = 2.68 J cm−3 and an ultrahigh efficiency of η = 90% are simultaneously achieved in the 0.90NaNbO3–0.10BaTiO3 ceramic by doping (Bi0.7La0.3)(Mg0.67Ta0.33)O3 (NNBT–xBLMT). Due to its high bandgap, the NNBT–0.10BLMT ceramic has a large dielectric breakdown strength (BDS) of 414 kV cm−1, consistent with the first-principles calculation based on density functional theory (DFT). Moreover, the NNBT–0.10BLMT ceramic exhibits excellent charge/discharge characteristics, with an ultrahigh current density CD of 526.06 A cm−2 and a high power density PD of 52.61 MW cm−3. In particular, the NNBT–0.10BLMT ceramic exhibits an outstanding temperature (20 °C–110 °C), frequency (10 Hz–120 Hz), and cycling (104 cycles) stability, highlighting its application potential in MLCCs.</description><subject>Capacitors</subject><subject>Ceramics</subject><subject>Charge density</subject><subject>Density functional theory</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Discharge</subject><subject>Energy storage</subject><subject>First principles</subject><subject>Flux density</subject><subject>Thermal stability</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkLtOwzAUhi0EEqWw8ASWWFhSfIsdj6WigFS1S5kr13ZTl8QucVIpGwtPwBvyJJiLGJjOf6RP3_l1ALjEaIQRlTeGmBZhwvPnIzDATIhMEsqO_zLhp-Asxh1ChKCcDMDbWG-dPThfwq5qG7V15RZab5uyh7ENjSotNNZH1_ZQeQPtZuO0s1730HmIRhLN1Xy9oB-v718VbtXSLSjUtlG10xEenIIK6lDvQ1K44GEdjEsK9b3EdLG1ZX8OTjaqivbidw7B0_RuOXnIZov7x8l4lu0xxW3GuDG5MEYyvk5BFkigNeMaY6MY0ZxLqylnqhA0xyxxhZTpI1goTSRlgg7B9Y9334SXzsZ2VbuobVUpb0MXV4QLyWXBJE7o1T90F7rGp3aJKlheyFxy-gkLx3Ec</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Wang, Hua</creator><creator>Li, Enzhu</creator><creator>Xing, Mengjiang</creator><creator>Zhong, Chaowei</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220705</creationdate><title>Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy</title><author>Wang, Hua ; Li, Enzhu ; Xing, Mengjiang ; Zhong, Chaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p131t-46dd57dd946bd5798070b46c11da42c669ec364a873514dd9899d2d17ac293473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitors</topic><topic>Ceramics</topic><topic>Charge density</topic><topic>Density functional theory</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Discharge</topic><topic>Energy storage</topic><topic>First principles</topic><topic>Flux density</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Li, Enzhu</creatorcontrib><creatorcontrib>Xing, Mengjiang</creatorcontrib><creatorcontrib>Zhong, Chaowei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hua</au><au>Li, Enzhu</au><au>Xing, Mengjiang</au><au>Zhong, Chaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>51</volume><issue>26</issue><spage>10085</spage><epage>10094</epage><pages>10085-10094</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of Wrec = 2.68 J cm−3 and an ultrahigh efficiency of η = 90% are simultaneously achieved in the 0.90NaNbO3–0.10BaTiO3 ceramic by doping (Bi0.7La0.3)(Mg0.67Ta0.33)O3 (NNBT–xBLMT). Due to its high bandgap, the NNBT–0.10BLMT ceramic has a large dielectric breakdown strength (BDS) of 414 kV cm−1, consistent with the first-principles calculation based on density functional theory (DFT). Moreover, the NNBT–0.10BLMT ceramic exhibits excellent charge/discharge characteristics, with an ultrahigh current density CD of 526.06 A cm−2 and a high power density PD of 52.61 MW cm−3. In particular, the NNBT–0.10BLMT ceramic exhibits an outstanding temperature (20 °C–110 °C), frequency (10 Hz–120 Hz), and cycling (104 cycles) stability, highlighting its application potential in MLCCs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2dt01265k</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2022-07, Vol.51 (26), p.10085-10094 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_proquest_miscellaneous_2679698491 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Capacitors Ceramics Charge density Density functional theory Dielectric breakdown Dielectric strength Discharge Energy storage First principles Flux density Thermal stability |
title | Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20ultrahigh%20energy%20storage%20density%20and%20efficiency%20in%200.90NaNbO3%E2%80%930.10BaTiO3%20ceramics%20via%20a%20composition%20modification%20strategy&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Wang,%20Hua&rft.date=2022-07-05&rft.volume=51&rft.issue=26&rft.spage=10085&rft.epage=10094&rft.pages=10085-10094&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d2dt01265k&rft_dat=%3Cproquest%3E2679698491%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684589596&rft_id=info:pmid/&rfr_iscdi=true |