Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy

Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2022-07, Vol.51 (26), p.10085-10094
Hauptverfasser: Wang, Hua, Li, Enzhu, Xing, Mengjiang, Zhong, Chaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10094
container_issue 26
container_start_page 10085
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 51
creator Wang, Hua
Li, Enzhu
Xing, Mengjiang
Zhong, Chaowei
description Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of Wrec = 2.68 J cm−3 and an ultrahigh efficiency of η = 90% are simultaneously achieved in the 0.90NaNbO3–0.10BaTiO3 ceramic by doping (Bi0.7La0.3)(Mg0.67Ta0.33)O3 (NNBT–xBLMT). Due to its high bandgap, the NNBT–0.10BLMT ceramic has a large dielectric breakdown strength (BDS) of 414 kV cm−1, consistent with the first-principles calculation based on density functional theory (DFT). Moreover, the NNBT–0.10BLMT ceramic exhibits excellent charge/discharge characteristics, with an ultrahigh current density CD of 526.06 A cm−2 and a high power density PD of 52.61 MW cm−3. In particular, the NNBT–0.10BLMT ceramic exhibits an outstanding temperature (20 °C–110 °C), frequency (10 Hz–120 Hz), and cycling (104 cycles) stability, highlighting its application potential in MLCCs.
doi_str_mv 10.1039/d2dt01265k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2679698491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679698491</sourcerecordid><originalsourceid>FETCH-LOGICAL-p131t-46dd57dd946bd5798070b46c11da42c669ec364a873514dd9899d2d17ac293473</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhi0EEqWw8ASWWFhSfIsdj6WigFS1S5kr13ZTl8QucVIpGwtPwBvyJJiLGJjOf6RP3_l1ALjEaIQRlTeGmBZhwvPnIzDATIhMEsqO_zLhp-Asxh1ChKCcDMDbWG-dPThfwq5qG7V15RZab5uyh7ENjSotNNZH1_ZQeQPtZuO0s1730HmIRhLN1Xy9oB-v718VbtXSLSjUtlG10xEenIIK6lDvQ1K44GEdjEsK9b3EdLG1ZX8OTjaqivbidw7B0_RuOXnIZov7x8l4lu0xxW3GuDG5MEYyvk5BFkigNeMaY6MY0ZxLqylnqhA0xyxxhZTpI1goTSRlgg7B9Y9334SXzsZ2VbuobVUpb0MXV4QLyWXBJE7o1T90F7rGp3aJKlheyFxy-gkLx3Ec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684589596</pqid></control><display><type>article</type><title>Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Hua ; Li, Enzhu ; Xing, Mengjiang ; Zhong, Chaowei</creator><creatorcontrib>Wang, Hua ; Li, Enzhu ; Xing, Mengjiang ; Zhong, Chaowei</creatorcontrib><description>Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of Wrec = 2.68 J cm−3 and an ultrahigh efficiency of η = 90% are simultaneously achieved in the 0.90NaNbO3–0.10BaTiO3 ceramic by doping (Bi0.7La0.3)(Mg0.67Ta0.33)O3 (NNBT–xBLMT). Due to its high bandgap, the NNBT–0.10BLMT ceramic has a large dielectric breakdown strength (BDS) of 414 kV cm−1, consistent with the first-principles calculation based on density functional theory (DFT). Moreover, the NNBT–0.10BLMT ceramic exhibits excellent charge/discharge characteristics, with an ultrahigh current density CD of 526.06 A cm−2 and a high power density PD of 52.61 MW cm−3. In particular, the NNBT–0.10BLMT ceramic exhibits an outstanding temperature (20 °C–110 °C), frequency (10 Hz–120 Hz), and cycling (104 cycles) stability, highlighting its application potential in MLCCs.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d2dt01265k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capacitors ; Ceramics ; Charge density ; Density functional theory ; Dielectric breakdown ; Dielectric strength ; Discharge ; Energy storage ; First principles ; Flux density ; Thermal stability</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2022-07, Vol.51 (26), p.10085-10094</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Li, Enzhu</creatorcontrib><creatorcontrib>Xing, Mengjiang</creatorcontrib><creatorcontrib>Zhong, Chaowei</creatorcontrib><title>Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of Wrec = 2.68 J cm−3 and an ultrahigh efficiency of η = 90% are simultaneously achieved in the 0.90NaNbO3–0.10BaTiO3 ceramic by doping (Bi0.7La0.3)(Mg0.67Ta0.33)O3 (NNBT–xBLMT). Due to its high bandgap, the NNBT–0.10BLMT ceramic has a large dielectric breakdown strength (BDS) of 414 kV cm−1, consistent with the first-principles calculation based on density functional theory (DFT). Moreover, the NNBT–0.10BLMT ceramic exhibits excellent charge/discharge characteristics, with an ultrahigh current density CD of 526.06 A cm−2 and a high power density PD of 52.61 MW cm−3. In particular, the NNBT–0.10BLMT ceramic exhibits an outstanding temperature (20 °C–110 °C), frequency (10 Hz–120 Hz), and cycling (104 cycles) stability, highlighting its application potential in MLCCs.</description><subject>Capacitors</subject><subject>Ceramics</subject><subject>Charge density</subject><subject>Density functional theory</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Discharge</subject><subject>Energy storage</subject><subject>First principles</subject><subject>Flux density</subject><subject>Thermal stability</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkLtOwzAUhi0EEqWw8ASWWFhSfIsdj6WigFS1S5kr13ZTl8QucVIpGwtPwBvyJJiLGJjOf6RP3_l1ALjEaIQRlTeGmBZhwvPnIzDATIhMEsqO_zLhp-Asxh1ChKCcDMDbWG-dPThfwq5qG7V15RZab5uyh7ENjSotNNZH1_ZQeQPtZuO0s1730HmIRhLN1Xy9oB-v718VbtXSLSjUtlG10xEenIIK6lDvQ1K44GEdjEsK9b3EdLG1ZX8OTjaqivbidw7B0_RuOXnIZov7x8l4lu0xxW3GuDG5MEYyvk5BFkigNeMaY6MY0ZxLqylnqhA0xyxxhZTpI1goTSRlgg7B9Y9334SXzsZ2VbuobVUpb0MXV4QLyWXBJE7o1T90F7rGp3aJKlheyFxy-gkLx3Ec</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Wang, Hua</creator><creator>Li, Enzhu</creator><creator>Xing, Mengjiang</creator><creator>Zhong, Chaowei</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220705</creationdate><title>Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy</title><author>Wang, Hua ; Li, Enzhu ; Xing, Mengjiang ; Zhong, Chaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p131t-46dd57dd946bd5798070b46c11da42c669ec364a873514dd9899d2d17ac293473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitors</topic><topic>Ceramics</topic><topic>Charge density</topic><topic>Density functional theory</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Discharge</topic><topic>Energy storage</topic><topic>First principles</topic><topic>Flux density</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Li, Enzhu</creatorcontrib><creatorcontrib>Xing, Mengjiang</creatorcontrib><creatorcontrib>Zhong, Chaowei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hua</au><au>Li, Enzhu</au><au>Xing, Mengjiang</au><au>Zhong, Chaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>51</volume><issue>26</issue><spage>10085</spage><epage>10094</epage><pages>10085-10094</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of Wrec = 2.68 J cm−3 and an ultrahigh efficiency of η = 90% are simultaneously achieved in the 0.90NaNbO3–0.10BaTiO3 ceramic by doping (Bi0.7La0.3)(Mg0.67Ta0.33)O3 (NNBT–xBLMT). Due to its high bandgap, the NNBT–0.10BLMT ceramic has a large dielectric breakdown strength (BDS) of 414 kV cm−1, consistent with the first-principles calculation based on density functional theory (DFT). Moreover, the NNBT–0.10BLMT ceramic exhibits excellent charge/discharge characteristics, with an ultrahigh current density CD of 526.06 A cm−2 and a high power density PD of 52.61 MW cm−3. In particular, the NNBT–0.10BLMT ceramic exhibits an outstanding temperature (20 °C–110 °C), frequency (10 Hz–120 Hz), and cycling (104 cycles) stability, highlighting its application potential in MLCCs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2dt01265k</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2022-07, Vol.51 (26), p.10085-10094
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_2679698491
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Capacitors
Ceramics
Charge density
Density functional theory
Dielectric breakdown
Dielectric strength
Discharge
Energy storage
First principles
Flux density
Thermal stability
title Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20ultrahigh%20energy%20storage%20density%20and%20efficiency%20in%200.90NaNbO3%E2%80%930.10BaTiO3%20ceramics%20via%20a%20composition%20modification%20strategy&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Wang,%20Hua&rft.date=2022-07-05&rft.volume=51&rft.issue=26&rft.spage=10085&rft.epage=10094&rft.pages=10085-10094&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d2dt01265k&rft_dat=%3Cproquest%3E2679698491%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684589596&rft_id=info:pmid/&rfr_iscdi=true