Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO3–0.10BaTiO3 ceramics via a composition modification strategy
Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2022-07, Vol.51 (26), p.10085-10094 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ceramic capacitors feature great power density, fast charge/discharge rates, and excellent thermal stability. The poor energy storage density of ceramic capacitors, on the other hand, significantly limits their application in power systems. In this work, a high recoverable energy storage density of Wrec = 2.68 J cm−3 and an ultrahigh efficiency of η = 90% are simultaneously achieved in the 0.90NaNbO3–0.10BaTiO3 ceramic by doping (Bi0.7La0.3)(Mg0.67Ta0.33)O3 (NNBT–xBLMT). Due to its high bandgap, the NNBT–0.10BLMT ceramic has a large dielectric breakdown strength (BDS) of 414 kV cm−1, consistent with the first-principles calculation based on density functional theory (DFT). Moreover, the NNBT–0.10BLMT ceramic exhibits excellent charge/discharge characteristics, with an ultrahigh current density CD of 526.06 A cm−2 and a high power density PD of 52.61 MW cm−3. In particular, the NNBT–0.10BLMT ceramic exhibits an outstanding temperature (20 °C–110 °C), frequency (10 Hz–120 Hz), and cycling (104 cycles) stability, highlighting its application potential in MLCCs. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/d2dt01265k |