Highly branched starch accelerates the restoration of edible quality of dried rice noodles during rehydration
Rice noodle with excellent edible quality usually needs a dense gel network structure, but the dense structure is detrimental to the entry of water molecules during dried rice noodle rehydration. To combine the conflict requirements, we described the branching modification of rice starch using 1,4-...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2022-09, Vol.292, p.119612-119612, Article 119612 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rice noodle with excellent edible quality usually needs a dense gel network structure, but the dense structure is detrimental to the entry of water molecules during dried rice noodle rehydration. To combine the conflict requirements, we described the branching modification of rice starch using 1,4- α- glucan branching enzyme (GBE). Highly branched starch with a short cluster structure reduced fractal dimension and crystallite thickness while increasing mesh size and hydrophilicity of rice noodle gel network. Rice noodles derived from rice soaked with 128 U/g of GBE had a desirable rehydration time (370 s), which was reduced by 39.84% compared to the control. Meanwhile, the shorter double helix formed by the short cluster contributed to the improved short-range order, resulting in GBE-modified rice noodles with significantly higher tensile strength than control. These findings demonstrate that manipulating the branching degree of starch is an effective method for producing high-quality instant rice noodles.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2022.119612 |