Microhomogeneity assessments using ultrasonic slurry sampling coupled with electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry
Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) is a very powerful technique for the direct analysis of solid materials prepared as slurries. The use of isotope dilution USS-ETV-ICP-MS (USS-ETV-ID-ICP-MS) for micro-homogeneity char...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part B: Atomic spectroscopy 2001-09, Vol.56 (9), p.1673-1686 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) is a very powerful technique for the direct analysis of solid materials prepared as slurries. The use of isotope dilution USS-ETV-ICP-MS (USS-ETV-ID-ICP-MS) for micro-homogeneity characterization studies of powdered reference materials based on elemental analyses, was investigated. Slurry analysis conditions were optimized taking into consideration density, particle size, analyte extraction, slurry mixing, analyte transport and sampling depth. Slurries were prepared using 1–20 mg of material and adding 1.0 ml of 5% nitric acid diluent containing 0.005% Triton X-100®. Three reference materials were analyzed (RM 8431a Mixed Diet, SRM 1548a Typical Diet and SRM 2709 San Joaquin Soil). Cu and Ni were determined in each material and Fe was also determined in RM 8431a Mixed Diet. ETV conditions were optimized and the benefit of using Pd as a carrier to enhance transport, combined with oxygen ashing was demonstrated. The accuracy of the method was verified by comparing analytical results with certified values. The precision of the method was demonstrated by comparing R.S.D.'s for slurry samples and aqueous standards and elemental ‘homogeneity’ was quantified based on the slurry sampling variability. The representative sample mass analyzed was calculated taking into consideration extraction of analyte into the liquid phase of the slurry. Representative sample masses of approximately 4 mg of RM 8431a provided slurry sampling variabilities of 10% or less for Cu, Fe and Ni. Representative sample masses of approximately 10 mg of SRM 1548a provided slurry sampling variabilities of approximately 10% for Cu and Ni. Representative sample masses of approximately 0.3 mg of SRM 2709 resulted in total analytical variabilities of less than 7%, highlighting the fact that the San Joaquin Soil is clearly the most homogeneous of the materials characterized. |
---|---|
ISSN: | 0584-8547 1873-3565 |
DOI: | 10.1016/S0584-8547(01)00273-7 |