MnIn2S4 nanosheets growing on rods-like β-MnO2 via covalent bonds as high-performance photocatalyst for boosting Cr(VI) photocatalytic reduction under visible light irradiation: Behavior and mechanism study

[Display omitted] It is an urgent and onerous task to develop catalysts for photocatalytic reduction of Cr(VI) in wastewater under wide pH range. In this work, a novel hierarchical Z-scheme MnO2/MnIn2S4 (MISO) heterojunction photocatalyst with MnIn2S4 nanosheets growing on the surface of β-MnO2 nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-11, Vol.625, p.264-277
Hauptverfasser: Wang, Yingjun, Liu, Yequn, Tian, Fenyang, Bao, Shuangyou, Sun, Chengyue, Yang, Weiwei, Yu, Yongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] It is an urgent and onerous task to develop catalysts for photocatalytic reduction of Cr(VI) in wastewater under wide pH range. In this work, a novel hierarchical Z-scheme MnO2/MnIn2S4 (MISO) heterojunction photocatalyst with MnIn2S4 nanosheets growing on the surface of β-MnO2 nanorods is constructed for efficient photocatalytic reduction of Cr(VI). The optimized 2.0-MISO photocatalyst exhibits the almost 100% reduction efficiency in the pH range of 2.1–5.6 under visible light irradiation, and the apparent rate constant is 0.05814 min−1, which is 29.96 and 3.27 times higher than the pure β-MnO2 and MnIn2S4, respectively. A efficient photocatalytic reduction of Cr(VI) to Cr(III) species on 2.0-MISO photocatalyst in actual industry wastewater (286.7 mg/L) up to 99.8% is achieved. Under natural light, the 2.0-MISO photocatalyst also shows rapid reduction of Cr(VI) species. The photocorrosion of MnIn2S4 was significantly hindered by the construction of heterojunction. And the O2− and e− species are the main active species during the Cr(VI) photoreduction process. The connection mode between MnIn2S4 and β-MnO2 is verified by DFT calculations and a possible photocatalytic mechanism is also proposed.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2022.06.015