Transplantation of Human Induced Pluripotent Stem Cell-Derived Microglia in Immunocompetent Mice Brain via Non-Invasive Transnasal Route
Microglia are the specialized population of macrophage-like cells of the brain. They play essential roles in both physiological and pathological brain functions. Most of our current understanding of microglia is based on experiments performed in the mouse. Human microglia differ from mouse microglia...
Gespeichert in:
Veröffentlicht in: | Journal of Visualized Experiments 2022-05 (183) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microglia are the specialized population of macrophage-like cells of the brain. They play essential roles in both physiological and pathological brain functions. Most of our current understanding of microglia is based on experiments performed in the mouse. Human microglia differ from mouse microglia, and thus response and characteristics of mouse microglia may not always represent that of human microglia. Further, due to ethical and technical difficulties, research on human microglia is restricted to in vitro culture system, which does not capitulate in vivo characteristics of microglia. To overcome these issues, a simplified method to non-invasively transplant induced pluripotent stem cell-derived human microglia (iPSMG) into the immunocompetent mice brain via a transnasal route in combination with pharmacological depletion of endogenous microglia using a colony-stimulating factor 1 receptor (CSF1R) antagonist is developed. This protocol provides a way to non-invasively transplant cells into the mouse brain and may therefore be valuable for evaluating the in vivo role of human microglia in physiological and pathological brain functions. |
---|---|
ISSN: | 1940-087X 1940-087X |
DOI: | 10.3791/63574 |