Stabilized minimum infinity-norm torque solution for redundant manipulators
The minimization of the joint torques based on the ∞-norm is proposed for the dynamic control of a kinematically redundant manipulator. The ∞-norm is preferred to the 2-norm in the minimization of the joint torques since the maximum torques of the actuators are limited. To obtain the minimum ∞-norm...
Gespeichert in:
Veröffentlicht in: | Robotica 1998-03, Vol.16 (2), p.193-205 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The minimization of the joint torques based on the ∞-norm is proposed for the dynamic control of a kinematically redundant manipulator. The ∞-norm is preferred to the 2-norm in the minimization of the joint torques since the maximum torques of the actuators are limited. To obtain the minimum ∞-norm torque solution, we devised a new algorithm that uses the acceleration polyhedron representing the end-effector's acceleration capability. Usually the minimization of the joint torques has an instability problem for the long trajectories of the end-effector. To suppress this instability problem, an inequality constraint, named the feasibility constraint, is developed from the geometrical relation between the required end-effector acceleration and the acceleration polyhedron. The minimization of the °-norm of the joint torques subject to the feasibility constraint is shown to improve the performances through the simulations of a 3-link planar redundant manipulator. |
---|---|
ISSN: | 0263-5747 1469-8668 |
DOI: | 10.1017/S0263574798000526 |