Effect of sodium citrate on asphaltene film at the oil–water interface
[Display omitted] Sodium citrate (Na3Cit) has been proven to improve the oil sands extraction recovery, but its mechanism is still unclear. Here we hypothesize that the presence of Na3Cit affects the asphaltene behaviour at the oil–water interface, which enhances oil–water separation and, thereby, h...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2022-11, Vol.625, p.24-32 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Sodium citrate (Na3Cit) has been proven to improve the oil sands extraction recovery, but its mechanism is still unclear. Here we hypothesize that the presence of Na3Cit affects the asphaltene behaviour at the oil–water interface, which enhances oil–water separation and, thereby, heavy oil recovery.
Na3Cit-asphaltene interaction was first investigated on their interfacial shear rheology at one heptol-water interface. Na3Cit-asphaltene interaction was further revealed by measuring the interaction forces between two heptol-water interfaces using the atomic force microscopy droplet technique combined with the Stokes-Reynolds-Young-Laplace (SRYL) model. Interfacial properties were further illustrated through interfacial tension, zeta potential, Langmuir trough, and FE-SEM.
Na3Cit was found to weaken the strength of the asphaltene film at the heptol-water interface. Moreover, Na3Cit could diminish the adhesion forces observed between two asphaltene-in-heptol droplets in high salinity solutions. Besides, Na3Cit also made the asphaltene-in-heptol droplet more negatively charged. These results collectively suggest that Na3Cit-asphaltene interaction results in a looser and more elastic asphaltene interfacial network with the slow formation and reduces the adhesion between two interfaces, all of which are most likely the consequence of increased electrostatic repulsion between asphaltene interfacial nanoaggregates. Our study provided new understandings of Na3Cit-asphaltene interactions at the interface. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2022.05.049 |