Polystyrene microplastics exacerbated liver injury from cyclophosphamide in mice: Insight into gut microbiota

Microplastics (MPs) have infiltrated human food system globally, and the latent health risks have been well-described. However, the impact of pre-consumed MPs on liver resistance to foreign robust stimuli remains unclear. In this study, we developed a mouse model drinking roughly 18 and 180 μg/kg/da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-09, Vol.840, p.156668-156668, Article 156668
Hauptverfasser: Wen, Siyue, Zhao, Yu, Liu, Shanji, Chen, Yanbiao, Yuan, Hongbin, Xu, Hengyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microplastics (MPs) have infiltrated human food system globally, and the latent health risks have been well-described. However, the impact of pre-consumed MPs on liver resistance to foreign robust stimuli remains unclear. In this study, we developed a mouse model drinking roughly 18 and 180 μg/kg/day polystyrene MPs for 90 days, then intraperitoneally injected mice with 80 mg/kg cyclophosphamide (CTX) to investigate whether chronic pre-exposure to MPs aggravates hepatoxicity induced by CTX. Slight liver injury was found in single CTX-treated mice, while more significant liver histopathological damage, inflammation and oxidative stress elicited by CTX were observed in pre-drinking MPs mice. Moreover, chronic exposure of MPs induced remarkable colonic impairments (e.g., leaky gut, mild inflammation and repressed antioxidant activity) as well as gut microbiota perturbation, which manifested positive association with aggravated hepatotoxicity via spearman correlation analysis. Fecal microbiota transplantation (FMT) trail was conducted to ulteriorly demonstrate the critical role of MPs-altered gut bacteria in exaggerated liver susceptibility to CTX stimulation. In conclusion, our study provided an insight that the adverse impact of MPs could be best revealed when animals suffering attack from hazardous substance. It also contributes to comprehensive assessment of health risk from environmentally pervasive MPs. [Display omitted] •MPs obviously elevated the gut permeability of mice.•MPs altered gut microbiota in mice and increased its pathogenicity.•Pre-exposed MPs exacerbated the cyclophosphamide-induced hepatotoxicity in mice.•FMT clarified the pivotal role of MPs-altered microbiota in aggravated hepatotoxicity.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.156668