Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity
The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell–derived neural stem cells (NSCs) and neur...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2022-06, Vol.376 (6599), p.eabf9088-eabf9088 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell–derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type–specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type–specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes.
The centrosome acts as the cell’s microtubule organizing center, supporting cell division and the extension of cilia and neurites. Newly born neurons require the microtubule organizing activity of centrosomes to migrate away from their birthplace at the ventricle. O’Neill
et al
. analyzed the centrosome proteome of human induced pluripotent stem cell–derived neural stem cells and neurons. The neural centrosome proteome contains a variety of RNA-binding/modifying proteins, including an RNA-splicing factor mutation that is linked to periventricular heterotopia. —PJH
Cell-type-specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.abf9088 |