A novel strain of Stenotrophomonas acidaminiphila produces thermostable alkaline peptidase on agro-industrial wastes: process optimization, kinetic modeling and scale-up
Bacterial alkaline peptidases, especially from Bacillus species, occupy the frontline in global enzyme market, albeit with poor production economics. Here, we report the deployment of response surface methodology approximations to optimize fermentation parameters for enhanced yield of alkaline pepti...
Gespeichert in:
Veröffentlicht in: | Archives of microbiology 2022-07, Vol.204 (7), p.400-400, Article 400 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacterial alkaline peptidases, especially from
Bacillus
species, occupy the frontline in global enzyme market, albeit with poor production economics. Here, we report the deployment of response surface methodology approximations to optimize fermentation parameters for enhanced yield of alkaline peptidase by the non-
Bacillus
bacterium;
Stenotrophomonas acidaminiphila
. Shake flask production under optimized conditions was scaled up in a 5-L bench-scale bioreactor. Logistic and modified Gompertz models revealed significant fits for biomass formation, total protein, and substrate consumption models. Maximum specific growth rate (
µ
max
= 0.362 h
−1
) of the bacterium in the optimized medium did not differ significantly from those in Luria–Bertani and trypticase soy broths. The aqueous two-phase system-purified 45.7 kDa alkaline protease retained 83% activity which improved with increasing sodium dodecyl sulfate concentration thus highlighting potential laundry application. Maximum enzyme activity occurred at 75ºC and pH 10.5 but was inhibited by 5 mM phenyl-methyl-sulfonyl fluoride suggesting a serine-protease nature. |
---|---|
ISSN: | 0302-8933 1432-072X |
DOI: | 10.1007/s00203-022-03010-9 |