Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease
The purpose of this project is to develop and validate a Deep Learning (DL) FDG PET imaging algorithm able to identify patients with any neurodegenerative diseases (Alzheimer's Disease (AD), Frontotemporal Degeneration (FTD) or Dementia with Lewy Bodies (DLB)) among patients with Mild Cognitive...
Gespeichert in:
Veröffentlicht in: | Journal of medical systems 2022-08, Vol.46 (8), p.52-52, Article 52 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this project is to develop and validate a Deep Learning (DL) FDG PET imaging algorithm able to identify patients with any neurodegenerative diseases (Alzheimer's Disease (AD), Frontotemporal Degeneration (FTD) or Dementia with Lewy Bodies (DLB)) among patients with Mild Cognitive Impairment (MCI). A 3D Convolutional neural network was trained using images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The ADNI dataset used for the model training and testing consisted of 822 subjects (472 AD and 350 MCI). The validation was performed on an independent dataset from La Fe University and Polytechnic Hospital. This dataset contained 90 subjects with MCI, 71 of them developed a neurodegenerative disease (64 AD, 4 FTD and 3 DLB) while 19 did not associate any neurodegenerative disease. The model had 79% accuracy, 88% sensitivity and 71% specificity in the identification of patients with neurodegenerative diseases tested on the 10% ADNI dataset, achieving an area under the receiver operating characteristic curve (AUC) of 0.90. On the external validation, the model preserved 80% balanced accuracy, 75% sensitivity, 84% specificity and 0.86 AUC. This binary classifier model based on FDG PET images allows the early prediction of neurodegenerative diseases in MCI patients in standard clinical settings with an overall 80% classification balanced accuracy. |
---|---|
ISSN: | 1573-689X 0148-5598 1573-689X |
DOI: | 10.1007/s10916-022-01836-w |