Effective Charged Exterior Surfaces for Enhanced Ionic Diffusion through Nanopores under Salt Gradients

High-performance osmotic energy conversion requires both large ionic throughput and high ionic selectivity, which can be significantly promoted by exterior surface charges simultaneously, especially for short nanopores. Here, we investigate the enhancement of ionic diffusion by charged exterior surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-06, Vol.13 (24), p.5669-5676
Hauptverfasser: Ma, Long, An, Xuan, Song, Fenhong, Qiu, Yinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-performance osmotic energy conversion requires both large ionic throughput and high ionic selectivity, which can be significantly promoted by exterior surface charges simultaneously, especially for short nanopores. Here, we investigate the enhancement of ionic diffusion by charged exterior surfaces under various conditions and explore corresponding effective charged areas. From simulations, ionic diffusion is promoted more significantly by exterior surface charges through nanopores with a shorter length, wider diameter, and larger surface charge density or under higher salt gradients. Effective widths of the charged ring regions near nanopores are reversely proportional to the pore length and linearly dependent on the pore diameter, salt gradient, and surface charge density. Due to the important role of effective charged areas in the propagation of ionic diffusion through single nanopores to cases with porous membranes, our results may provide useful guidance to the design and fabrication of porous membranes for practical high-performance osmotic energy harvesting.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.2c01351