Enhancing Biohybrid CO2 to Multicarbon Reduction via Adapted Whole-Cell Catalysts

Catalytic CO2 conversion to renewable fuel is of utmost importance to establish a carbon-neutral society. Bioelectrochemical CO2 reduction, in which a solid cathode interfaces with CO2-reducing bacteria, represents a promising approach for renewable and sustainable fuel production. The rational desi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-07, Vol.22 (13), p.5503-5509
Hauptverfasser: Kim, Jimin, Cestellos-Blanco, Stefano, Shen, Yue-xiao, Cai, Rong, Yang, Peidong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Catalytic CO2 conversion to renewable fuel is of utmost importance to establish a carbon-neutral society. Bioelectrochemical CO2 reduction, in which a solid cathode interfaces with CO2-reducing bacteria, represents a promising approach for renewable and sustainable fuel production. The rational design of biocatalysts in the biohybrid system is imperative to effectively reduce CO2 into valuable chemicals. Here, we introduce methanol adapted Sporomusa ovata (S. ovata) to enhance the slow metabolic activity of wild-type microorganisms to our semiconductive silicon nanowires (Si NWs) array for efficient CO2 reduction. The adapted whole-cell catalysts enable an enhancement of CO2 fixation with a superior faradaic efficiency on the poised Si NWs cathode. The synergy of the high-surface-area cathode and the adapted strain achieves a CO2-reducing current density of 0.88 ± 0.11 mA/cm2, which is 2.4-fold higher than the wild-type strain. This new generation of biohybrids using adapted S. ovata also decreases the charge transfer resistance at the cathodic interface and facilitates the faster charge transfer from the solid electrode to bacteria.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.2c01576