Microstructural characterization of irradiation-induced Cu-enriched clusters in reactor pressure vessel steels

The effect of irradiation on microstructure of four irradiated reactor pressure vessel steels (a low copper A533B-1 plate, a low copper A508-3 forging, a high copper Linde 80 flux weld and a high copper Linde 1092 flux weld) was determined by using complementary microstructural techniques such as op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2001-10, Vol.298 (3), p.211-224
Hauptverfasser: Carter, R.G., Soneda, N., Dohi, K., Hyde, J.M., English, C.A., Server, W.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of irradiation on microstructure of four irradiated reactor pressure vessel steels (a low copper A533B-1 plate, a low copper A508-3 forging, a high copper Linde 80 flux weld and a high copper Linde 1092 flux weld) was determined by using complementary microstructural techniques such as optical position-sensitive atom probe (OPoSAP), field emission gun scanning transmission electron microscopy (FEGSTEM) and small angle neutron scattering (SANS). In the low copper steels, irradiation resulted in small shifts in transition temperature and small changes in hardness increments. The microstructural analyzes showed that this response was dominated by matrix damage. In contrast, both copper-enriched clusters and matrix damage formed in the high copper welds. This information was then used as input to the Russell–Brown model to predict the change in hardness resulting from copper-enriched clusters. The calculated hardness increments were found to be consistent with the experimental data.
ISSN:0022-3115
1873-4820
DOI:10.1016/S0022-3115(01)00659-6