A mixture model with Poisson and zero-truncated Poisson components to analyze road traffic accidents in Turkey
The analysis of traffic accident data is crucial to address numerous concerns, such as understanding contributing factors in an accident's chain-of-events, identifying hotspots, and informing policy decisions about road safety management. The majority of statistical models employed for analyzin...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2022-03, Vol.49 (4), p.1003-1017 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The analysis of traffic accident data is crucial to address numerous concerns, such as understanding contributing factors in an accident's chain-of-events, identifying hotspots, and informing policy decisions about road safety management. The majority of statistical models employed for analyzing traffic accident data are logically count regression models (commonly Poisson regression) since a count - like the number of accidents - is used as the response. However, features of the observed data frequently do not make the Poisson distribution a tenable assumption. For example, observed data rarely demonstrate an equal mean and variance and often times possess excess zeros. Sometimes, data may have heterogeneous structure consisting of a mixture of populations, rather than a single population. In such data analyses, mixtures-of-Poisson-regression models can be used. In this study, the number of injuries resulting from casualties of traffic accidents registered by the General Directorate of Security (Turkey, 2005-2014) are modeled using a novel mixture distribution with two components: a Poisson and zero-truncated-Poisson distribution. Such a model differs from existing mixture models in literature where the components are either all Poisson distributions or all zero-truncated Poisson distributions. The proposed model is compared with the Poisson regression model via simulation and in the analysis of the traffic data. |
---|---|
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664763.2020.1843610 |