Stress alters the transcriptional activity of Leydig cells dependently on the diurnal time

The increasing amount of data points to the circadian timing system as an essential part of processes regulating androgen homeostasis. However, the relationship between stress response, timekeeping-, and steroidogenesis-related systems is unexplored. Here, the stress-response of the testosterone-pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2022-08, Vol.323 (2), p.C322-C332
Hauptverfasser: Medar, Marija Lj, Andric, Silvana A, Kostic, Tatjana S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing amount of data points to the circadian timing system as an essential part of processes regulating androgen homeostasis. However, the relationship between stress response, timekeeping-, and steroidogenesis-related systems is unexplored. Here, the stress-response of the testosterone-producing rat Leydig cells depending on the time of stressful events was studied. The study analyzes the effects of 3-hour immobilization (IMO) applied at different periods during the day. The IMO performed once (1xIMO) or repeated in 10 consecutive days (10xIMO). Both types of IMO increased corticosterone and decreased testosterone blood level. However, the effect of 10xIMO occurring in the active phase on blood testosterone was less pronounced. This is related to different sensitivity to IMO-events depending on the diurnal time. Most steroidogenesis-related genes (Lhcgr, Cyp11a1, Hsd3b1/2, Cyp17a1) were down-regulated in the inactive but unchanged or even up-regulated in the active phase of the day. Both types of IMO stimulated the expression of clock elements Bmal1/BMAL1, Per1/PER1 regardless of the day's stage and reduced Rev-erba in the inactive phase. The principal-component-analysis (PCA) confirmed a major shift, for both IMO-types, in the transcription of the genes across the passive/active stage. Further, 10xIMO changed a diurnal pattern of the glucocorticoid receptor (Nr3c1/GR) expression while the observed time-dependent IMO-response of the Leydig cells correlated with different corticosterone engagements. Altogether, the Leydig cell's stress-response depends on the daytime of the stressful event, emphasizing the importance of the circadian-system in supporting androgen homeostasis and male fertility.
ISSN:0363-6143
1522-1563
DOI:10.1152/ajpcell.00412.2021