Atomic and Molecular Layer Deposition of Chiral Thin Films Showing up to 99% Spin Selective Transport
Spin electronics is delivering a much desired combination of properties such as high speed, low power, and high device densities for the next generation of memory devices. Utilizing chiral-induced spin selectivity (CISS) effect is a promising path toward efficient and simple spintronic devices. To b...
Gespeichert in:
Veröffentlicht in: | Nano letters 2022-06, Vol.22 (12), p.5022-5028 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spin electronics is delivering a much desired combination of properties such as high speed, low power, and high device densities for the next generation of memory devices. Utilizing chiral-induced spin selectivity (CISS) effect is a promising path toward efficient and simple spintronic devices. To be compatible with state-of-the-art integrated circuits manufacturing methodologies, vapor phase methodologies for deposition of spin filtering layers are needed. Here, we present vapor phase deposition of hybrid organic–inorganic thin films with embedded chirality. The deposition scheme relies on a combination of atomic and molecular layer deposition (A/MLD) utilizing enantiomeric pure alaninol molecular precursors combined with trimethyl aluminum (TMA) and water. The A/MLD deposition method deliver highly conformal thin films allowing the fabrication of several types of nanometric scale spintronic devices. The devices showed high spin polarization (close to 100%) for 5 nm thick spin filter layer deposited by A/MLD. The procedure is compatible with common device processing methodologies. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c01953 |