Fabrication of Curli Fiber-PEDOT:PSS Biomaterials with Tunable Self-Healing, Mechanical, and Electrical Properties

Poly­(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) is a highly conductive, easily processable, self-healing polymer. It has been shown to be useful in bioelectronic applications, for instance, as a biointerfacing layer for studying brain activity, in biosensitive transistors, and in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2023-05, Vol.9 (5), p.2156-2169
Hauptverfasser: Huyer, Catrina, Modafferi, Daniel, Aminzare, Masoud, Ferraro, Juliana, Abdali, Zahra, Roy, Sophia, Saldanha, Dalia Jane, Wasim, Saadia, Alberti, Johan, Feng, Shurui, Cicoira, Fabio, Dorval Courchesne, Noémie-Manuelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly­(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) is a highly conductive, easily processable, self-healing polymer. It has been shown to be useful in bioelectronic applications, for instance, as a biointerfacing layer for studying brain activity, in biosensitive transistors, and in wearable biosensors. A green and biofriendly method for improving the mechanical properties, biocompatibility, and stability of PEDOT:PSS involves mixing the polymer with a biopolymer. Via structural changes and interactions with PEDOT:PSS, biopolymers have the potential to improve the self-healing ability, flexibility, and electrical conductivity of the composite. In this work, we fabricated novel protein–polymer multifunctional composites by mixing PEDOT:PSS with genetically programmable amyloid curli fibers produced byEscherichia coli bacteria. Curli fibers are among the stiffest protein polymers and, once isolated from bacterial biofilms, can form plastic-like thin films that heal with the addition of water. Curli-PEDOT:PSS composites containing 60% curli fibers exhibited a conductivity 4.5-fold higher than that of pristine PEDOT:PSS. The curli fibers imbued the biocomposites with an immediate water-induced self-healing ability. Further, the addition of curli fibers lowered the Young’s and shear moduli of the composites, improving their compatibility for tissue-interfacing applications. Lastly, we showed that genetically engineered fluorescent curli fibers retained their ability to fluoresce within curli-PEDOT:PSS composites. Curli fibers thus allow to modulate a range of properties in conductive PEDOT:PSS composites, broadening the applications of this polymer in biointerfaces and bioelectronics.
ISSN:2373-9878
2373-9878
DOI:10.1021/acsbiomaterials.1c01180