Simultaneous Discrimination of Cereulide-Producing Bacillus cereus and Psychrotolerant B. cereus Group by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry
Cereulide-producing Bacillus cereus, which causes foodborne illnesses with vomiting, and psychrotolerant B. cereus group strains such as Bacillus mycoides, which can grow at ≥7°C and cause spoilage of refrigerated foods, are significant concerns for the food industry. Rapid and simple methods to dis...
Gespeichert in:
Veröffentlicht in: | Journal of food protection 2022-08, Vol.85 (8), p.1192-1202 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cereulide-producing Bacillus cereus, which causes foodborne illnesses with vomiting, and psychrotolerant B. cereus group strains such as Bacillus mycoides, which can grow at ≥7°C and cause spoilage of refrigerated foods, are significant concerns for the food industry. Rapid and simple methods to discriminate the cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains are needed. We developed a novel, rapid, and simple method with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis for simultaneous discrimination of these two groups from other B. cereus group strains. A potassium adduct of cereulide was used to detect cereulide-producing B. cereus, and three ribosomal subunit proteins (L30, S16, and S20) were used to detect psychrotolerant B. cereus group. A total of 51 B. cereus group strains were analyzed by MALDI-TOF MS. The biomarkers allowed successful discrimination of 16 cereulide-producing B. cereus and 15 psychrotolerant B. cereus group strains from other B. cereus group strains. The results showed that this MALDI-TOF MS analysis allows simultaneous discrimination of cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains. This efficient method has the potential to be a valuable tool for ensuring food safety. |
---|---|
ISSN: | 0362-028X 1944-9097 |
DOI: | 10.4315/jfp-21-450 |